, 200:437 | Cite as

Zebra mussels (Dreissena polymorpha): a new perspective for water quality management

  • H. H. Reeders
  • A. Bij de Vaate
Past Six: Macrofauna


In the evaluation of the role of lake restoration programmesin situ measurements of the filtration rate of the freshwater musselDreissena polymorpha have been performed in Lake Wolderwijd, The Netherlands. The filtration rate mainly depends on the suspended matter content of the water, and shows an inverse exponential relationship with this factor. The filtration activity is temperature indifferent between approx. 5 and 20 °C. At low temperatures the filtration rate drops abruptly, at high temperatures gradual inhibition occurs. The filtration rate shows a sigmoidal relation with the length of the mussel. The largestD. polymorpha have a diminished filtration rate compared to animals of smaller size. This might be a degenerative feature of the oldest mussels. In Lake Wolderwijd a population density of 675 per m2 is required to compensate phytoplankton growth by grazing. Manipulation of the size of the population can be executed by adding suitable substrates for the mussel.

Key words

biomanipulation lake restoration filtration rate Bivalvia Dreissena polymorpha 


  1. Andersson, G., H. Berggren, G. Cronberg & C. Gelin, 1978. Effects of planktivorous and benthivorous fish on organisms and water chemistry in eutrophic lakes. Hydrobiologia 59: 9–15.CrossRefGoogle Scholar
  2. Benedens, H.-G. & W. Hinz, 1980. Zur Tagesperiodizität der Filtrationsleistung vonDreissena polymorpha undSphaerium corneum (Bivalvia). Hydrobiologia 69: 45–48.CrossRefGoogle Scholar
  3. Benndorf, J., 1987. Food web manipulation without nutrient control: a useful strategy in lake restoration? Schweiz. Z. Hydrol. 49: 237–248.Google Scholar
  4. Benndorf, J., H. Schultz, A. Benndorf, R. Unger, E. Penz, H. Kneschke, K. Kossatz, R. Dumke, U. Hornig, R. Kruspe & R. Reichel, 1988. Food-web manipulation by enhancement of piscivorous fish stocks: long-term effects in the hypertrophic Bautzen reservoir. Limnologica (Berlin) 19: 97–110.Google Scholar
  5. Coughlan, J., 1969. The estimation of filtering rate from the clearance of suspensions. Mar. Biol. 2: 356–358.CrossRefGoogle Scholar
  6. Davids, C., 1964. The influence of suspensions of micro-organisms of different concentrations on the pumping and food retention by the mussel (Mytilus edulis L.). Neth. J. Sea Res. 2: 233–249.CrossRefGoogle Scholar
  7. Dorgelo, J. & J.-W. Smeenk, 1988. Contribution to the ecophysiology ofDreissena polymorpha (Pallas) (Mollusca: Bivalvia): growth, filtration rate and respiration. Verh. int. Ver. Limnol. 23: 2202–2208.Google Scholar
  8. Foster-Smith, R. L., 1975. The effect of concentration of suspension on the filtration rates and pseudofaecal production forMytilus edulis L.,Cerastoderma edule (L.) andVenerupis pullastra (Montagu). J. exp. mar. Biol. Ecol. 17: 1–22.CrossRefGoogle Scholar
  9. Harper, D. M. & A. J. D. Ferguson, 1982. Zooplankton and their relationships with water quality and fisheries. Hydrobiologia 88: 135–145.CrossRefGoogle Scholar
  10. Hinz, W. & H.-G. Scheil, 1972. Zur Filtrationsleistung vonDreissena, Sphaerium undPisidium (Eulamellibranchiata). Oecologia 11: 45–54.CrossRefGoogle Scholar
  11. Hosper, S. H., 1989. Biomanipulation, new perspective for restoring shallow, eutrophic lakes in The Netherlands. Hydrobiol. Bull. 23: 5–10.CrossRefGoogle Scholar
  12. Jørgensen, C. B., T. Kiørboe, F. Møhlenberg & H. U. Riisgård, 1984. Ciliary and mucusnet filter feeding, with special reference to fluid mechanical characteristics. Mar. Ecol. Progr. Ser. 15: 283–292.Google Scholar
  13. Klee, O., 1971. Die größte Kläranlage im Bodensee: eine Muschel. Mikrokosmos 5: 129–132.Google Scholar
  14. Kryger, J. & H. U. Riisgård, 1988. Filtration rate capacities in 6 species of European freshwater bivalves. Oecologia 77: 34–38.CrossRefGoogle Scholar
  15. Leentvaar, P., 1961. Hydrobiologische waarnemingen in het Veluwemeer. De Levende Natuur 64 (4): 273–279.Google Scholar
  16. Lewandowski, K., 1982. The role of early developmental stages in the dynamics ofDreissena polymorpha (Pall.) (Bivalvia) populations in lakes. II. Settling of larvae and the dynamics of numbers of settled individuals. Ekol. pol. 30: 223–286.Google Scholar
  17. Loogman, J. G., A. F. Post & L.R. Mur, 1980. The influence of periodicity in light conditions, as determined by the trophic state of the water, on the growth of the green algaScenedesmus protuberans and the cyanobacteriumOscillatoria agardhii. Dev. in Hydrobiol. 2: 79–82.Google Scholar
  18. Lvova-Katchanova, A. A., 1971. The role ofDreissena polymorpha Pallas in the self purification process in Uchinski reservoir. In: Kompleksnye issledovanija vodoemov. 196–203, Moscow, Izdat. Moskovskogo Univ.Google Scholar
  19. Meijer, M.-L., A. J. P. Raat & R. W. Doef, 1989. Restoration by biomanipulation of the Dutch shallow, eutrophic Lake Bleiswijkse Zoom: first results. Hydrobiol. Bull. 23: 49–58.CrossRefGoogle Scholar
  20. Mikheev, V. P., 1967. Filtration nutrition of theDreissena. Trudy vses. nauchno-issled. Inst. prud. rybn. Khoz. 15: 117–129.Google Scholar
  21. Møhlenberg, F. & H. U. Riisgård, 1979. Filtration rate, using a new indirect technique in thirteen species of suspension-feeding bivalves. Mar. Biol. 54: 143–147.CrossRefGoogle Scholar
  22. Morton, B., 1971. Studies on the biology ofDreissena polymorpha Pall. V. Some aspects of micro-organisms upon the rate of filtration. Proc. malac. Soc. Lond. 39: 289–301.Google Scholar
  23. Mur, L. R., H. J. Gons & L. Van Liere, 1978. Competition of the green algaScenedesmus and the blue-green algaOscillatoria. Mitt. int. Ver. Limnol. 21: 473–479.Google Scholar
  24. Reeders, H. H., 1989. De driehoeksmossel (Dreissena polymorpha) als natuurlijk waterfilter; onderzoek naar mogelijkheden voor reductie van de verontreinigde sliblast bij de inlaat van het Volkerak-Zoommeer. DBW/Riza report nr. 89.052.Google Scholar
  25. Reeders, H. H., A. Bij de Vaate & F. J. Slim, 1989. The filtration rate ofDreissena polymorpha (Bivalvia) in three Dutch lakes with reference to biological water quality management. Freshwat. Biol. 22: 133–141.CrossRefGoogle Scholar
  26. Richter, A. F., 1986. Biomanipulation and its feasibility for water quality management in shallow eutrophic water bodies in the Netherlands. Hydrobiol. Bull. 20: 165–172.CrossRefGoogle Scholar
  27. Scheffer, M., 1989. Alternative stable states in eutrophic shallow fresh water systems: a minimal model. Hydrobiol. Bull. 23: 73–84.CrossRefGoogle Scholar
  28. Shapiro, J. & D. I. Wright, 1984. Lake restoration by biomanipulation: Round Lake, Minnesota, the first two years. Freshwat. Biol. 14: 371–383.CrossRefGoogle Scholar
  29. Shumway, S. E. & T. L. Cucci, 1987. The effects of the toxic dinoflagellateProtonyaulax tamarensis on the feeding and behaviour of bivalve molluscs. Aquat. Tox. 10: 9–27.CrossRefGoogle Scholar
  30. Stanczykowska, A., 1968. The filtration capacity of populations ofDreissena polymorpha Pall. in different lakes, as a factor affecting circulation of matter in the lake. Ekol. Pol. Ser. B 14: 265–270.Google Scholar
  31. Stanczykowska, A., 1975. Ecosystem of the Mikolajskie Lake. Regularities of theDreissena polymorpha Pall. (Bivalvia) occurrence and its function in the lake. Pol. Arch. Hydrobiol. 22 (1): 73–78.Google Scholar
  32. Stanczykowska, A., 1984. Role of bivalves in the phosphorus and nitrogen budget in lakes. Verh. int. Ver. Limnol. 22: 982–985.Google Scholar
  33. Stanczykowska, A., W. Lawacz & J. Mattice, 1975. Use of field measurements of consumption and assimilation in evaluation of the role ofDreissena polymorpha Pall. in a lake ecosystem. Pol. Arch. Hydrobiol. 22 (4): 509–520.Google Scholar
  34. Stanczykowska, A., W. Lawacz, J. Mattice & K. Lewandowski, 1976. Bivalves as a factor effecting circulation of matter in Lake Mikolajskie (Poland). Limnologica 10: 347–352.Google Scholar
  35. Stenson, J. A. E., T. Bohlin, L. Henrikson, B. I. Nilsson, H. G. Nyman, H. G. Oscarson & P. Larsson, 1978. Effects of fish removal from a small lake. Verh. int. Ver. Limnol. 20: 794–801.Google Scholar
  36. Ten Winkel, E. H. & C. Davids, 1982. Food selection byDreissena polymorpha Pallas (Mollusca: Bivalvia). Freshwat. Biol. 12: 553–558.CrossRefGoogle Scholar
  37. Van Donk, E., 1983. Factors influencing phytoplankton growth and succession in Lake Maarsseveen (I). Ph.D. Thesis University of Amsterdam.Google Scholar
  38. Walne, P. R., 1972. The influence of current speed, body size and water temperature on the filtration rate of five species of bivalves. J. mar. biol. Ass. U.K. 52: 345–374.CrossRefGoogle Scholar
  39. Walz, N., 1978a. Die Produktion derDreissena-Population und deren Bedeutung im Stoffkreislauf des Bodensees. Arch. Hydrobiol. 82: 482–499.Google Scholar
  40. Walz, N., 1978b. The energy balance of the freshwater musselDreissena polymorpha Pallas in laboratory experiments and in Lake Constance. I. Pattern of activity, feeding and assimilation efficiency. Arch. Hydrobiol./Suppl. 55 (1): 83–105.Google Scholar
  41. Wiktor, J., 1963. Research on the ecology ofDreissena polymorpha Pall. in the Szczecin Lagoon (Zalew Szczecinski). Ekol. Pol. Ser. A 11: 275–280.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • H. H. Reeders
    • 1
  • A. Bij de Vaate
    • 1
  1. 1.Institute for Inland Water Management and Waste Water TreatmentLelystadThe Netherlands

Personalised recommendations