Why do cladocerans fail to control algal blooms?

Abstract

Field studies show that even at high nutrient loads phytoplankton may be kept at low levels by filter-feeding zooplankton for a period of weeks (spring clear water phase in lakes) or months (low-stocked fish-ponds). In the absence of planktivorous fish, large-bodied cladocerans effectively control the abundance of algae of a broad size spectrum. Laboratory experiments show that, although difficult to handle and of poor nutritional value, filamentous algae can also be utilized by large-bodiedDaphnia and prevented from population increase, exactly as the principles of the biomanipulation approach would predict.

This is not always the case, however. Even when released from predation, large cladocerans often cannot grow and reproduce fast enough to prevent bloom formation. Sometimes, they disappear when the bloom becomes dense, and the biomanipulation approach is not applicable any more.

Recent experimental data on four differently-sizedDaphnia species are used in an attempt to (1) explain why cladocerans fail to control filamentous cyanobacteria when filament density is high, and (2) determine the critical filament density at whichDaphnia becomes ineffective. At this critical concentration,Daphnia growth and reproduction is halted, and no positive numerical response to growing phytoplankton standing crop should be expected fromDaphnia population. Bloom formation thus becomes irreversible. The question of what can be done to overcome this bottleneck of the biomanipulation approach may become one of the most challenging questions in plankton ecology in the nearest future.

This is a preview of subscription content, access via your institution.

References

  1. Andersson, G., H. Bergren, G. Cronberg & C. Gellin, 1978. Effects of planktivorous and benthivorous fish on organisms and water chemistry in eutrophic lakes. Hydrobiologia 59: 9–15.

    Article  CAS  Google Scholar 

  2. Brooks, J. L. & S. I. Dodson, 1965. Predation, body size and composition of plankton. Science 150: 28–35.

    Article  PubMed  CAS  Google Scholar 

  3. Benndorf, J., H. Kneschke, K. Kossatz & E. Penz, 1984. Manipulation of the pelagic food web by stocking with predacious fishes. Int. Revue ges. Hydrobiol. 69: 407–428.

    Google Scholar 

  4. Bogatova, I., 1965. The food of daphnids and diaptomids in ponds. Trudy Vserossivskogo nauchno-issledovatel'skogo instituta prudova rybnovo khozyaistva, voprosy prudovovo rybovodstva 13: 165–178.

    Google Scholar 

  5. Burns, C. W., 1968. Direct observation of mechanisms regulating feeding behavior of Daphnia in lake water. Int. Revue ges. Hydrobiol. 53: 83–100.

    Google Scholar 

  6. Burns, C. W., 1969. Relation between filtering rate, temperature and body size in four species ofDaphnia. Limnol. Oceanogr. 14: 423–440.

    Google Scholar 

  7. Burns, C. W., 1987. Insights into zooplankton-cyanobacteria interactions derived from enclosure studies. N.Z.J. mar. Freshwat. Res. 21: 477–482.

    Google Scholar 

  8. Burns, C. W., D. J. Forsyth, J. F. Haney, M. R. James, W. Lampert & R. D. Pridmore, (submitted). Coexistence and exclusion of zooplankton byAnabaena minutissima var.attenuata in Lake Rotongaio, New Zealand. Arch. Hydrobiol. Beih. Ergebn. Limnol.

  9. Dawidowicz, P., 1989. Conditions which must be fullfilled to allow efficient control of phytoplankton by zooplankton. Ph. D. Thesis, University of Warsaw (in Polish), 48 pp.

  10. Dawidowicz, P., 1990. Effectiveness of phytoplankton control by large-bodied and small-bodied zooplankton. Hydrobiologia 200/201: 43–47.

    Google Scholar 

  11. Dawidowicz, P & Z. M. Gliwicz, 1987. Biomanipulation. III. The role of direct and indirect relationship between phytoplankton and zooplankton. Wiadomosci Ekolog. 33: 259–277.

    Google Scholar 

  12. Dawidowicz, P., Z. M. Gliwicz & R. D. Gulati, 1988. CanDaphnia prevent a blue-green algal bloom in hypertrophic lakes? A laboratory test. Limnologica (Berlin) 19, 1: 21–26.

    Google Scholar 

  13. De Bernardi, R. & G. Giussani, 1978. Effect of mass fish mortality on zooplankton structure and dynamics in a small Italian lake (Lago di Annone). Verh. int. Ver. Limnol. 20: 1045–1048.

    Google Scholar 

  14. De Bernardi, R., G. Giussani & E. Lasso Pedretti, 1981. The significance of blue-green algae as food for filter-feeding zooplankton: experimental studies onDaphnia spp. fed byMicrocystis aeruginosa. Verh. int. Ver. Limnol. 21: 477–483.

    Google Scholar 

  15. DeMott, W. R., 1989. The role of food limitation and competition in zooplankton seasonal succession. In U. Sommer (ed.), Plankton ecology: Succession in planktonic communities. Springer, Heidelberg: 195–252.

    Google Scholar 

  16. Dodson, S. I., 1974. Zooplankton competition and predation: An experimental test of the size-efficiency hypothesis. Ecology 55: 605–613.

    Article  Google Scholar 

  17. Edmondson, W. T. & A. H. Litt, 1982.Daphnia in Lake Washington. Limnol. and Oceanogr. 27: 272–293.

    Google Scholar 

  18. Elliott, E. T., D. Casranares, D. Perlmutter & K. G. Porter, 1983. Trophic level control of production and nutrient dynamics in experimental planktonic community. Oikos 41: 7–16.

    Article  Google Scholar 

  19. Fott, J., L. Pechar & M. Prazakova, 1980. Fish as a factor controlling water quality in ponds. Dev. Hydrobiol. 2: 255–261.

    CAS  Google Scholar 

  20. Fretwell, S. F., 1977. The regulating of plant communities by the food chains exploiting them. Persp. Biol. Med. 20: 169–185.

    Google Scholar 

  21. Fulton III, R. S., 1988. Grazing on filamentous algae by herbivorous zooplankton. Freshwat. Biol. 20: 263–271.

    Article  Google Scholar 

  22. Fulton III, R. S. & M. W. Pearl, 1988. Effects of blue-green algaeMicrocystis aeruginosa on zooplankton competitive relations. Oecologia (Berlin) 76: 383–389.

    Google Scholar 

  23. Geller, W. & H. Muller, 1981. The filtration apparatus of Cladocera: Filter mesh-sizes and their implications on food selectivity. Oecologia (Berlin) 49: 316–321.

    Article  Google Scholar 

  24. Gliwicz, Z. M., 1969. Studies on the feeding of pelagic zooplankton in lakes with varying trophy. Ekol. pol. A. 17: 65–708.

    Google Scholar 

  25. Gliwicz, Z. M., 1975. Effect of zooplankton grazing on photosynthetic activity and composition of phytoplankton. Verh. int. Ver. Limnol. 19: 1490–1497.

    Google Scholar 

  26. Gliwicz, Z. M., 1977. Food size selection and seasonal succession of filter feeding zooplankton in an eutrophic lake. Ekol. pol. 25: 179–225.

    Google Scholar 

  27. Gliwicz, Z. M., 1980. Filtering rates, food size selection, and feeding rates in cladocerans — another aspect of interspecific competition in filter-feeding zooplankton. In W. C. Kerfoot (ed.), Evolution and ecology of zooplankton communities, University Press of New England, Hanover: 282–291.

    Google Scholar 

  28. Gliwicz, Z. M., 1985. Predation of food limitation: an ultimate reason for extinction of planktonic cladoceran species. Arch. Hydrobiol. Beih. Ergebn. Limnol. 21: 419–430.

    Google Scholar 

  29. Gliwicz, Z. M., 1990. Food thresholds and body size in cladocerans. Nature 343: 638–640.

    Article  Google Scholar 

  30. Gliwicz, Z. M., in press.Daphnia growth at different concentrations of cyanobacteria filaments. Arch. Hydrobiol.

  31. Gliwicz, Z. M. & W. Lampert, in press. Food thresholds in threeDaphnia species in the absence and in the presence of blue-green filaments. Ecology.

  32. Gliwicz, Z. M. & J. Pijanowska, 1989. The role of predation in zooplankton succession. In U. Sommer (ed.), Plankton ecology: Succession in planktonic communities. Springer, Heidelberg: 253–296.

    Google Scholar 

  33. Gliwicz, Z. M. & E. Siedlar, 1980. Food size limitation and algae interferring with food collection inDaphnia. Arch. Hydrobiol. 88: 155–177.

    Google Scholar 

  34. Goad, J., 1984. A biomanipulation experiment in Green Lake, Seattle, Washington. Arch. Hydrobiol. 102: 137–153.

    Google Scholar 

  35. Hanazato, T. & M. Yasuno, 1984. Growth, reproduction and assimilation ofMoina macropoda fed onMycrocystis and/orChlorella. Jap. J. Ecol. 34: 195–202.

    Google Scholar 

  36. Haney, J. F., 1987. Field studies on zooplankton-cyanobacteria interactions. N.Z.J. mar. Freshwat. Res. 21: 467–475.

    Google Scholar 

  37. Hanski, I. & E. Ranta, 1983. Coexistence in a patchy environment: three species ofDaphnia in rock pools. J. anim. Ecol. 52: 263–279

    Article  Google Scholar 

  38. Hartman, H. J., 1985. Feeding ofDaphnia pulicaria andDiaptomus ashlandi on mixtures of unicellular and filamentous algae. Verh. int. Ver. Limnol. 22: 3178–3183.

    Google Scholar 

  39. Hawkins, P. & W. Lampert, in press. The effect ofDaphnia body size on filtering rate inhibition, in the presence of a filamentous cyanobacterium. Limnol. Oceanogr.

  40. Holm, N. P., G. G. Ganf & J. Shapiro, 1983. Feeding and assimilation rates ofDaphnia pulex fedAphanizomenon flos-aquae. Limnol. Oceanogr. 28: 677–687.

    Google Scholar 

  41. Holm, N. P. & J. Shapiro, 1984. An examination of lipid reserves and the nutritional status ofDaphnia pulex fedAphanizomenon flos-aquae. Limnol. Oceanogr. 29: 1137–1140.

    Google Scholar 

  42. Hrbáček, J., 1962. Species composition and amount of the zooplankton in relation to the fish stock. Rozpr. Česk. Akad. Ved, Rada Mat. Prir. Ved, 10: 1–116.

    Google Scholar 

  43. Hrbáček, J., B. Desortova & J. Popovsky, 1978. Influence of the fish stock on the phosphorus-chlorophyll ratio. Verh. int. Ver. Limnol. 20: 1624–1628.

    Google Scholar 

  44. Infante, A., 1973. Untersuchungen über die Ausnutzbarkeit verschledener Algen durch das Zooplankton. Arch. Hydrobiol., Suppl. 42: 340–405.

    Google Scholar 

  45. Infante, A. & S. E. B. Abella, 1985. Inhibition ofDaphnia byOscillatoria in Lake Washington. Limnol. Oceanogr. 30: 1046–1052.

    Google Scholar 

  46. Infante, A. & W. Riehl, 1984. The effect ofCyanophyta upon zooplankton in a eutrophic tropical lake. Hydrobiologia 113: 293–298.

    Article  Google Scholar 

  47. Knisely, K. & W. Geller, 1986. Selective feeding of four zooplankton species on natural lake phytoplankton. Oecologia (Berlin) 69: 86–94.

    Article  Google Scholar 

  48. Lampert, W., 1978. Climatic conditions and planktonic interactions as factors controlling the regular succession of spring algal bloom and extremely clear water in Lake Constance. Verh. int. Ver. Limnol. 20: 969–974.

    Google Scholar 

  49. Lampert, W., 1981. Inhibitory and toxic effects of blue-green algae onDaphnia. Int. Revue ges. Hydrobiol. 66: 285–298.

    Google Scholar 

  50. Lampert, W., 1982. Further studies on the inhibitory effects of toxic blue-greenMicrocystis aeruginosa on the filtering rate of zooplankton. Arch. Hydrobiol. 95: 207–220.

    Google Scholar 

  51. Lampert, W., 1987. Laboratory studies on zooplankton-cyanobacteria interactions. N.Z.J. mar. Freshwat. Res. 21: 483–490.

    Article  Google Scholar 

  52. Lampert, W., 1988. The relationship between zooplankton biomass and grazing. A review. Limnologica (Berlin) 19,1: 1–20.

    Google Scholar 

  53. Lehman, J. T., 1980. Release cycling of nutrients between planktonic algae and herbivores. Limnol. Oceanogr. 25: 620–632.

    CAS  Google Scholar 

  54. Lynch, M., 1977. Fitness and optimal size in zooplankton populations. Ecology 58: 763–774.

    Article  Google Scholar 

  55. Lynch, M., 1979. Predation, competition, and zooplankton structure: An experimental study. Limnol. Oceanogr. 24: 253–272.

    Google Scholar 

  56. Lynch, M., 1980.Aphanizomenon blooms: Alternate control and cultivation byDaphnia pulex in W. C. Kerfoot (ed.), Evolution and ecology of zooplankton communities, University Press of New England, Hanover: 229–304.

    Google Scholar 

  57. Lynch, M. & J. Shapiro, 1981. Predation, enrichment and phytoplankton community structure. Limnol. Oceanogr. 26: 86–102.

    Google Scholar 

  58. McQueen, D. J., J. R. Post & E. L. Mills, 1986. Trophic relationships in freshwater ecosystems. Can. J. Fish. aquat. Sci. 43: 1571–1581.

    Article  Google Scholar 

  59. Nizan, S., C. Dimentman & M. Shilo, 1986. Acute toxic effects of cyanobacteriumMicrocystis aeruginosa onDaphnia magna. Limnol. Oceanogr. 31: 497–502.

    Google Scholar 

  60. Peters, R. H., 1975. Phosphorus excretion and the measurement of feeding and assimilation by zooplankton. Limnol. Oceanogr. 20: 858–859.

    CAS  Google Scholar 

  61. Porter, K. G., 1973. Selective grazing and differential digestion of algae by zooplankton. Nature 244: 179–180.

    Article  Google Scholar 

  62. Porter, K. G., 1977. The plant-animal interface in freshwater ecosystems. Am. Sci. 65: 159–70.

    Google Scholar 

  63. Porter, K. G. & R. McDonough, 1984. the energetic cost of response to blue-green algae filaments by cladocerans. Limnol. Oceanogr. 29: 365–369.

    Google Scholar 

  64. Porter, K. G., & J. D. Orcutt, 1980. Nutritional adequacy, manage-ability, and toxicity as factors that determine the food quality of green and blue-green algae forDaphnia. In W. C. Kerfoot (ed.), Evolution and ecology of zooplankton communities. University Press of New England, Hanover: 268–281.

    Google Scholar 

  65. Reinertsen, H. & Y. Olsen, 1984. Effects of fish elimination on the phytoplankton community of an eutrophic lake. Verh. int. Ver. Limnol. 22: 649–657.

    Google Scholar 

  66. Richman, S. & S. I. Dodson, 1983. The effect of food quality on feeding and respiration by ‘UDaphnia`u and ‘UDiaptomus`u. Limnol. Oceanogr. 28: 948–956.

    Article  Google Scholar 

  67. Romanovsky, Y. E., 1984. Individual growth rate as a measure of competitive adventages in cladoceran crustaceans. Int. Revue ges. Hydrobiol. 69: 613–632.

    Google Scholar 

  68. Romanovsky, Y., 1985. Food limitation and life-history strategies in cladoceran crustaceans. Arch. Hydrobiol. Beih. Ergebn. Limnol. 21: 363–372.

    Google Scholar 

  69. Scharf, E. M., P. V. Spittler & J.-A. Oertzen, 1979. Zum Einfluss vonMycrocystis aeruginosa (Cyanophyta) auf das Populationswachstum vonChydorus sphaericus (Cladocera). Wissenschaftl. Zeitschr. d. Univers. Rostock 28: 531–534.

    Google Scholar 

  70. Schindler, D. W. & G. W. Comita, 1972. The dependence of primary production upon physical and chemical factors in a small senescing lake, including the effects of complete water oxygen depletion. Arch. Hydrobiol. 69: 413–451.

    Google Scholar 

  71. Shapiro, J., D. I. Wright, 1984. Lake restauration by biomanipulation — Round Lake, Minnesota. Freshwat. Biol. 14: 371–383.

    Article  Google Scholar 

  72. Shapiro, J., B. Forsberg, V. Lamarra, G. Lindmark, M. Lynch, E. Smeltzer & G. Zoto, 1982. Experiments and experiences in biomanipulation: Studies of ways to reduce algal abundance and eliminate blue-green. Interim. Rep. No. 19, Limnol. Res. center, Univ. of Minnesota, Minneapolis, 251 pp.

    Google Scholar 

  73. Smith, F. E., 1969. Effects of enrichment in mathematical models. In Eutrophication: causes, consequences, correctives. Nat. Acad. Sci. Publ. 1700: 124–129.

    Google Scholar 

  74. Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol. 106,4: 433–471.

    Google Scholar 

  75. Sorokin, Yu. I., A. V. Monakov, Ye. D. Morduchaj-Boltovskaja, E. A. Tsichon-Lucanina & R. A. Rodova, 1965. Experiments on the applicability of the radiocarbon method for studying the trophic role of blue-green algae. Akad. Nauk. SSSR. Institut Biol. Vnutrenn. Vod: 235–240.

  76. Stenson, J. A. E., T. Bohlin, L. Henrikson, B. J. Nilsson, H. G. Nyman, H. G. Oscarson & P. Larsson, 1978. Effect of fish removal from a small lake. Verh. int. Ver. Limnol. 20: 794–801.

    Google Scholar 

  77. Sterner, R. W., 1986. Herbivores' direct and indirect effects on algal populations. Science 231: 605–607.

    Article  PubMed  CAS  Google Scholar 

  78. Tessier, A. J. & C. E. Goulden, 1987. Cladoceran juvenile growth. Limnol. Oceanogr. 32: 680–686.

    Google Scholar 

  79. Thompson, J. M., A. J. D. Ferguson & C. S. Reynolds, 1982. Natural filtration rates of zooplankton in a closed system: the derivation of a community grazing index. J. Plankton Res. 4: 545–560.

    Google Scholar 

  80. Therlkeld, S. T., 1981. The midsummer dynamics of twoDaphnia species in Wintergreen Lake, Michigan. Ecology 60: 165–179.

    Article  Google Scholar 

  81. Therlkeld, S. T., 1985. Resource variation and the initiation of midsummer declines of cladoceran populations. Arch. Hydrobiol. Beih. ergebn. Limnol. 21: 333–340.

    Google Scholar 

  82. Tillmann, U. & W. Lampert, 1984. Competitive ability of differently sizedDaphnia species: An experimental test. J. Freshwat. Ecol. 2: 311–323.

    Google Scholar 

  83. Vaga, R. M., D. A. Culver & C. A. Munch, 1985. The fecundity ratios ofDaphnia andBosmina as a function of inedible algal standing drop. Verh. int. Ver. Limnol. 22: 3072–3075.

    Google Scholar 

  84. Webster, K. E. & R. H. Peters, 1978. Some size-dependent inhibitions of larger cladoceran filters in filamentous suspensions. Limnol. Oceanogr. 23: 1238–1245.

    Article  Google Scholar 

  85. Zankai, N. P., 1983. Ingestion rates of someDaphnia species in a shallow lake (Lake Balaton, Hungary). Int. Revue ges. Hydrobiol. 68: 227–237.

    Google Scholar 

  86. Zankai, N. P. & J. E. Ponyi, 1986. Composition, density and feeding of crustacean zooplankton community in a shallow, temperate lake (Lake Balaton, Hungary). Hydrobiologia 135: 131–147.

    Article  Google Scholar 

  87. Zaret, T. M., 1980. Predation and freshwater communities. Yale Univ. Press, New Haven, 180 pp.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gliwicz, Z.M. Why do cladocerans fail to control algal blooms?. Hydrobiologia 200, 83–97 (1990). https://doi.org/10.1007/BF02530331

Download citation

Key words

  • biomanipulation
  • blue-green blooms
  • Daphnia
  • cladocerans
  • cyanobacteria
  • eutrophic lakes
  • filtering rates
  • grazing pressure
  • phytoplankton control
  • summer declines
  • zooplankton