Abstract
Field studies show that even at high nutrient loads phytoplankton may be kept at low levels by filter-feeding zooplankton for a period of weeks (spring clear water phase in lakes) or months (low-stocked fish-ponds). In the absence of planktivorous fish, large-bodied cladocerans effectively control the abundance of algae of a broad size spectrum. Laboratory experiments show that, although difficult to handle and of poor nutritional value, filamentous algae can also be utilized by large-bodiedDaphnia and prevented from population increase, exactly as the principles of the biomanipulation approach would predict.
This is not always the case, however. Even when released from predation, large cladocerans often cannot grow and reproduce fast enough to prevent bloom formation. Sometimes, they disappear when the bloom becomes dense, and the biomanipulation approach is not applicable any more.
Recent experimental data on four differently-sizedDaphnia species are used in an attempt to (1) explain why cladocerans fail to control filamentous cyanobacteria when filament density is high, and (2) determine the critical filament density at whichDaphnia becomes ineffective. At this critical concentration,Daphnia growth and reproduction is halted, and no positive numerical response to growing phytoplankton standing crop should be expected fromDaphnia population. Bloom formation thus becomes irreversible. The question of what can be done to overcome this bottleneck of the biomanipulation approach may become one of the most challenging questions in plankton ecology in the nearest future.
This is a preview of subscription content, access via your institution.
References
Andersson, G., H. Bergren, G. Cronberg & C. Gellin, 1978. Effects of planktivorous and benthivorous fish on organisms and water chemistry in eutrophic lakes. Hydrobiologia 59: 9–15.
Brooks, J. L. & S. I. Dodson, 1965. Predation, body size and composition of plankton. Science 150: 28–35.
Benndorf, J., H. Kneschke, K. Kossatz & E. Penz, 1984. Manipulation of the pelagic food web by stocking with predacious fishes. Int. Revue ges. Hydrobiol. 69: 407–428.
Bogatova, I., 1965. The food of daphnids and diaptomids in ponds. Trudy Vserossivskogo nauchno-issledovatel'skogo instituta prudova rybnovo khozyaistva, voprosy prudovovo rybovodstva 13: 165–178.
Burns, C. W., 1968. Direct observation of mechanisms regulating feeding behavior of Daphnia in lake water. Int. Revue ges. Hydrobiol. 53: 83–100.
Burns, C. W., 1969. Relation between filtering rate, temperature and body size in four species ofDaphnia. Limnol. Oceanogr. 14: 423–440.
Burns, C. W., 1987. Insights into zooplankton-cyanobacteria interactions derived from enclosure studies. N.Z.J. mar. Freshwat. Res. 21: 477–482.
Burns, C. W., D. J. Forsyth, J. F. Haney, M. R. James, W. Lampert & R. D. Pridmore, (submitted). Coexistence and exclusion of zooplankton byAnabaena minutissima var.attenuata in Lake Rotongaio, New Zealand. Arch. Hydrobiol. Beih. Ergebn. Limnol.
Dawidowicz, P., 1989. Conditions which must be fullfilled to allow efficient control of phytoplankton by zooplankton. Ph. D. Thesis, University of Warsaw (in Polish), 48 pp.
Dawidowicz, P., 1990. Effectiveness of phytoplankton control by large-bodied and small-bodied zooplankton. Hydrobiologia 200/201: 43–47.
Dawidowicz, P & Z. M. Gliwicz, 1987. Biomanipulation. III. The role of direct and indirect relationship between phytoplankton and zooplankton. Wiadomosci Ekolog. 33: 259–277.
Dawidowicz, P., Z. M. Gliwicz & R. D. Gulati, 1988. CanDaphnia prevent a blue-green algal bloom in hypertrophic lakes? A laboratory test. Limnologica (Berlin) 19, 1: 21–26.
De Bernardi, R. & G. Giussani, 1978. Effect of mass fish mortality on zooplankton structure and dynamics in a small Italian lake (Lago di Annone). Verh. int. Ver. Limnol. 20: 1045–1048.
De Bernardi, R., G. Giussani & E. Lasso Pedretti, 1981. The significance of blue-green algae as food for filter-feeding zooplankton: experimental studies onDaphnia spp. fed byMicrocystis aeruginosa. Verh. int. Ver. Limnol. 21: 477–483.
DeMott, W. R., 1989. The role of food limitation and competition in zooplankton seasonal succession. In U. Sommer (ed.), Plankton ecology: Succession in planktonic communities. Springer, Heidelberg: 195–252.
Dodson, S. I., 1974. Zooplankton competition and predation: An experimental test of the size-efficiency hypothesis. Ecology 55: 605–613.
Edmondson, W. T. & A. H. Litt, 1982.Daphnia in Lake Washington. Limnol. and Oceanogr. 27: 272–293.
Elliott, E. T., D. Casranares, D. Perlmutter & K. G. Porter, 1983. Trophic level control of production and nutrient dynamics in experimental planktonic community. Oikos 41: 7–16.
Fott, J., L. Pechar & M. Prazakova, 1980. Fish as a factor controlling water quality in ponds. Dev. Hydrobiol. 2: 255–261.
Fretwell, S. F., 1977. The regulating of plant communities by the food chains exploiting them. Persp. Biol. Med. 20: 169–185.
Fulton III, R. S., 1988. Grazing on filamentous algae by herbivorous zooplankton. Freshwat. Biol. 20: 263–271.
Fulton III, R. S. & M. W. Pearl, 1988. Effects of blue-green algaeMicrocystis aeruginosa on zooplankton competitive relations. Oecologia (Berlin) 76: 383–389.
Geller, W. & H. Muller, 1981. The filtration apparatus of Cladocera: Filter mesh-sizes and their implications on food selectivity. Oecologia (Berlin) 49: 316–321.
Gliwicz, Z. M., 1969. Studies on the feeding of pelagic zooplankton in lakes with varying trophy. Ekol. pol. A. 17: 65–708.
Gliwicz, Z. M., 1975. Effect of zooplankton grazing on photosynthetic activity and composition of phytoplankton. Verh. int. Ver. Limnol. 19: 1490–1497.
Gliwicz, Z. M., 1977. Food size selection and seasonal succession of filter feeding zooplankton in an eutrophic lake. Ekol. pol. 25: 179–225.
Gliwicz, Z. M., 1980. Filtering rates, food size selection, and feeding rates in cladocerans — another aspect of interspecific competition in filter-feeding zooplankton. In W. C. Kerfoot (ed.), Evolution and ecology of zooplankton communities, University Press of New England, Hanover: 282–291.
Gliwicz, Z. M., 1985. Predation of food limitation: an ultimate reason for extinction of planktonic cladoceran species. Arch. Hydrobiol. Beih. Ergebn. Limnol. 21: 419–430.
Gliwicz, Z. M., 1990. Food thresholds and body size in cladocerans. Nature 343: 638–640.
Gliwicz, Z. M., in press.Daphnia growth at different concentrations of cyanobacteria filaments. Arch. Hydrobiol.
Gliwicz, Z. M. & W. Lampert, in press. Food thresholds in threeDaphnia species in the absence and in the presence of blue-green filaments. Ecology.
Gliwicz, Z. M. & J. Pijanowska, 1989. The role of predation in zooplankton succession. In U. Sommer (ed.), Plankton ecology: Succession in planktonic communities. Springer, Heidelberg: 253–296.
Gliwicz, Z. M. & E. Siedlar, 1980. Food size limitation and algae interferring with food collection inDaphnia. Arch. Hydrobiol. 88: 155–177.
Goad, J., 1984. A biomanipulation experiment in Green Lake, Seattle, Washington. Arch. Hydrobiol. 102: 137–153.
Hanazato, T. & M. Yasuno, 1984. Growth, reproduction and assimilation ofMoina macropoda fed onMycrocystis and/orChlorella. Jap. J. Ecol. 34: 195–202.
Haney, J. F., 1987. Field studies on zooplankton-cyanobacteria interactions. N.Z.J. mar. Freshwat. Res. 21: 467–475.
Hanski, I. & E. Ranta, 1983. Coexistence in a patchy environment: three species ofDaphnia in rock pools. J. anim. Ecol. 52: 263–279
Hartman, H. J., 1985. Feeding ofDaphnia pulicaria andDiaptomus ashlandi on mixtures of unicellular and filamentous algae. Verh. int. Ver. Limnol. 22: 3178–3183.
Hawkins, P. & W. Lampert, in press. The effect ofDaphnia body size on filtering rate inhibition, in the presence of a filamentous cyanobacterium. Limnol. Oceanogr.
Holm, N. P., G. G. Ganf & J. Shapiro, 1983. Feeding and assimilation rates ofDaphnia pulex fedAphanizomenon flos-aquae. Limnol. Oceanogr. 28: 677–687.
Holm, N. P. & J. Shapiro, 1984. An examination of lipid reserves and the nutritional status ofDaphnia pulex fedAphanizomenon flos-aquae. Limnol. Oceanogr. 29: 1137–1140.
Hrbáček, J., 1962. Species composition and amount of the zooplankton in relation to the fish stock. Rozpr. Česk. Akad. Ved, Rada Mat. Prir. Ved, 10: 1–116.
Hrbáček, J., B. Desortova & J. Popovsky, 1978. Influence of the fish stock on the phosphorus-chlorophyll ratio. Verh. int. Ver. Limnol. 20: 1624–1628.
Infante, A., 1973. Untersuchungen über die Ausnutzbarkeit verschledener Algen durch das Zooplankton. Arch. Hydrobiol., Suppl. 42: 340–405.
Infante, A. & S. E. B. Abella, 1985. Inhibition ofDaphnia byOscillatoria in Lake Washington. Limnol. Oceanogr. 30: 1046–1052.
Infante, A. & W. Riehl, 1984. The effect ofCyanophyta upon zooplankton in a eutrophic tropical lake. Hydrobiologia 113: 293–298.
Knisely, K. & W. Geller, 1986. Selective feeding of four zooplankton species on natural lake phytoplankton. Oecologia (Berlin) 69: 86–94.
Lampert, W., 1978. Climatic conditions and planktonic interactions as factors controlling the regular succession of spring algal bloom and extremely clear water in Lake Constance. Verh. int. Ver. Limnol. 20: 969–974.
Lampert, W., 1981. Inhibitory and toxic effects of blue-green algae onDaphnia. Int. Revue ges. Hydrobiol. 66: 285–298.
Lampert, W., 1982. Further studies on the inhibitory effects of toxic blue-greenMicrocystis aeruginosa on the filtering rate of zooplankton. Arch. Hydrobiol. 95: 207–220.
Lampert, W., 1987. Laboratory studies on zooplankton-cyanobacteria interactions. N.Z.J. mar. Freshwat. Res. 21: 483–490.
Lampert, W., 1988. The relationship between zooplankton biomass and grazing. A review. Limnologica (Berlin) 19,1: 1–20.
Lehman, J. T., 1980. Release cycling of nutrients between planktonic algae and herbivores. Limnol. Oceanogr. 25: 620–632.
Lynch, M., 1977. Fitness and optimal size in zooplankton populations. Ecology 58: 763–774.
Lynch, M., 1979. Predation, competition, and zooplankton structure: An experimental study. Limnol. Oceanogr. 24: 253–272.
Lynch, M., 1980.Aphanizomenon blooms: Alternate control and cultivation byDaphnia pulex in W. C. Kerfoot (ed.), Evolution and ecology of zooplankton communities, University Press of New England, Hanover: 229–304.
Lynch, M. & J. Shapiro, 1981. Predation, enrichment and phytoplankton community structure. Limnol. Oceanogr. 26: 86–102.
McQueen, D. J., J. R. Post & E. L. Mills, 1986. Trophic relationships in freshwater ecosystems. Can. J. Fish. aquat. Sci. 43: 1571–1581.
Nizan, S., C. Dimentman & M. Shilo, 1986. Acute toxic effects of cyanobacteriumMicrocystis aeruginosa onDaphnia magna. Limnol. Oceanogr. 31: 497–502.
Peters, R. H., 1975. Phosphorus excretion and the measurement of feeding and assimilation by zooplankton. Limnol. Oceanogr. 20: 858–859.
Porter, K. G., 1973. Selective grazing and differential digestion of algae by zooplankton. Nature 244: 179–180.
Porter, K. G., 1977. The plant-animal interface in freshwater ecosystems. Am. Sci. 65: 159–70.
Porter, K. G. & R. McDonough, 1984. the energetic cost of response to blue-green algae filaments by cladocerans. Limnol. Oceanogr. 29: 365–369.
Porter, K. G., & J. D. Orcutt, 1980. Nutritional adequacy, manage-ability, and toxicity as factors that determine the food quality of green and blue-green algae forDaphnia. In W. C. Kerfoot (ed.), Evolution and ecology of zooplankton communities. University Press of New England, Hanover: 268–281.
Reinertsen, H. & Y. Olsen, 1984. Effects of fish elimination on the phytoplankton community of an eutrophic lake. Verh. int. Ver. Limnol. 22: 649–657.
Richman, S. & S. I. Dodson, 1983. The effect of food quality on feeding and respiration by ‘UDaphnia`u and ‘UDiaptomus`u. Limnol. Oceanogr. 28: 948–956.
Romanovsky, Y. E., 1984. Individual growth rate as a measure of competitive adventages in cladoceran crustaceans. Int. Revue ges. Hydrobiol. 69: 613–632.
Romanovsky, Y., 1985. Food limitation and life-history strategies in cladoceran crustaceans. Arch. Hydrobiol. Beih. Ergebn. Limnol. 21: 363–372.
Scharf, E. M., P. V. Spittler & J.-A. Oertzen, 1979. Zum Einfluss vonMycrocystis aeruginosa (Cyanophyta) auf das Populationswachstum vonChydorus sphaericus (Cladocera). Wissenschaftl. Zeitschr. d. Univers. Rostock 28: 531–534.
Schindler, D. W. & G. W. Comita, 1972. The dependence of primary production upon physical and chemical factors in a small senescing lake, including the effects of complete water oxygen depletion. Arch. Hydrobiol. 69: 413–451.
Shapiro, J., D. I. Wright, 1984. Lake restauration by biomanipulation — Round Lake, Minnesota. Freshwat. Biol. 14: 371–383.
Shapiro, J., B. Forsberg, V. Lamarra, G. Lindmark, M. Lynch, E. Smeltzer & G. Zoto, 1982. Experiments and experiences in biomanipulation: Studies of ways to reduce algal abundance and eliminate blue-green. Interim. Rep. No. 19, Limnol. Res. center, Univ. of Minnesota, Minneapolis, 251 pp.
Smith, F. E., 1969. Effects of enrichment in mathematical models. In Eutrophication: causes, consequences, correctives. Nat. Acad. Sci. Publ. 1700: 124–129.
Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol. 106,4: 433–471.
Sorokin, Yu. I., A. V. Monakov, Ye. D. Morduchaj-Boltovskaja, E. A. Tsichon-Lucanina & R. A. Rodova, 1965. Experiments on the applicability of the radiocarbon method for studying the trophic role of blue-green algae. Akad. Nauk. SSSR. Institut Biol. Vnutrenn. Vod: 235–240.
Stenson, J. A. E., T. Bohlin, L. Henrikson, B. J. Nilsson, H. G. Nyman, H. G. Oscarson & P. Larsson, 1978. Effect of fish removal from a small lake. Verh. int. Ver. Limnol. 20: 794–801.
Sterner, R. W., 1986. Herbivores' direct and indirect effects on algal populations. Science 231: 605–607.
Tessier, A. J. & C. E. Goulden, 1987. Cladoceran juvenile growth. Limnol. Oceanogr. 32: 680–686.
Thompson, J. M., A. J. D. Ferguson & C. S. Reynolds, 1982. Natural filtration rates of zooplankton in a closed system: the derivation of a community grazing index. J. Plankton Res. 4: 545–560.
Therlkeld, S. T., 1981. The midsummer dynamics of twoDaphnia species in Wintergreen Lake, Michigan. Ecology 60: 165–179.
Therlkeld, S. T., 1985. Resource variation and the initiation of midsummer declines of cladoceran populations. Arch. Hydrobiol. Beih. ergebn. Limnol. 21: 333–340.
Tillmann, U. & W. Lampert, 1984. Competitive ability of differently sizedDaphnia species: An experimental test. J. Freshwat. Ecol. 2: 311–323.
Vaga, R. M., D. A. Culver & C. A. Munch, 1985. The fecundity ratios ofDaphnia andBosmina as a function of inedible algal standing drop. Verh. int. Ver. Limnol. 22: 3072–3075.
Webster, K. E. & R. H. Peters, 1978. Some size-dependent inhibitions of larger cladoceran filters in filamentous suspensions. Limnol. Oceanogr. 23: 1238–1245.
Zankai, N. P., 1983. Ingestion rates of someDaphnia species in a shallow lake (Lake Balaton, Hungary). Int. Revue ges. Hydrobiol. 68: 227–237.
Zankai, N. P. & J. E. Ponyi, 1986. Composition, density and feeding of crustacean zooplankton community in a shallow, temperate lake (Lake Balaton, Hungary). Hydrobiologia 135: 131–147.
Zaret, T. M., 1980. Predation and freshwater communities. Yale Univ. Press, New Haven, 180 pp.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Gliwicz, Z.M. Why do cladocerans fail to control algal blooms?. Hydrobiologia 200, 83–97 (1990). https://doi.org/10.1007/BF02530331
Issue Date:
DOI: https://doi.org/10.1007/BF02530331
Key words
- biomanipulation
- blue-green blooms
- Daphnia
- cladocerans
- cyanobacteria
- eutrophic lakes
- filtering rates
- grazing pressure
- phytoplankton control
- summer declines
- zooplankton