Skip to main content
Log in

Why do cladocerans fail to control algal blooms?

  • Part Two: Zooplankton-Phytoplankton Interactions
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Field studies show that even at high nutrient loads phytoplankton may be kept at low levels by filter-feeding zooplankton for a period of weeks (spring clear water phase in lakes) or months (low-stocked fish-ponds). In the absence of planktivorous fish, large-bodied cladocerans effectively control the abundance of algae of a broad size spectrum. Laboratory experiments show that, although difficult to handle and of poor nutritional value, filamentous algae can also be utilized by large-bodiedDaphnia and prevented from population increase, exactly as the principles of the biomanipulation approach would predict.

This is not always the case, however. Even when released from predation, large cladocerans often cannot grow and reproduce fast enough to prevent bloom formation. Sometimes, they disappear when the bloom becomes dense, and the biomanipulation approach is not applicable any more.

Recent experimental data on four differently-sizedDaphnia species are used in an attempt to (1) explain why cladocerans fail to control filamentous cyanobacteria when filament density is high, and (2) determine the critical filament density at whichDaphnia becomes ineffective. At this critical concentration,Daphnia growth and reproduction is halted, and no positive numerical response to growing phytoplankton standing crop should be expected fromDaphnia population. Bloom formation thus becomes irreversible. The question of what can be done to overcome this bottleneck of the biomanipulation approach may become one of the most challenging questions in plankton ecology in the nearest future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson, G., H. Bergren, G. Cronberg & C. Gellin, 1978. Effects of planktivorous and benthivorous fish on organisms and water chemistry in eutrophic lakes. Hydrobiologia 59: 9–15.

    Article  CAS  Google Scholar 

  • Brooks, J. L. & S. I. Dodson, 1965. Predation, body size and composition of plankton. Science 150: 28–35.

    Article  PubMed  CAS  Google Scholar 

  • Benndorf, J., H. Kneschke, K. Kossatz & E. Penz, 1984. Manipulation of the pelagic food web by stocking with predacious fishes. Int. Revue ges. Hydrobiol. 69: 407–428.

    Google Scholar 

  • Bogatova, I., 1965. The food of daphnids and diaptomids in ponds. Trudy Vserossivskogo nauchno-issledovatel'skogo instituta prudova rybnovo khozyaistva, voprosy prudovovo rybovodstva 13: 165–178.

    Google Scholar 

  • Burns, C. W., 1968. Direct observation of mechanisms regulating feeding behavior of Daphnia in lake water. Int. Revue ges. Hydrobiol. 53: 83–100.

    Google Scholar 

  • Burns, C. W., 1969. Relation between filtering rate, temperature and body size in four species ofDaphnia. Limnol. Oceanogr. 14: 423–440.

    Google Scholar 

  • Burns, C. W., 1987. Insights into zooplankton-cyanobacteria interactions derived from enclosure studies. N.Z.J. mar. Freshwat. Res. 21: 477–482.

    Google Scholar 

  • Burns, C. W., D. J. Forsyth, J. F. Haney, M. R. James, W. Lampert & R. D. Pridmore, (submitted). Coexistence and exclusion of zooplankton byAnabaena minutissima var.attenuata in Lake Rotongaio, New Zealand. Arch. Hydrobiol. Beih. Ergebn. Limnol.

  • Dawidowicz, P., 1989. Conditions which must be fullfilled to allow efficient control of phytoplankton by zooplankton. Ph. D. Thesis, University of Warsaw (in Polish), 48 pp.

  • Dawidowicz, P., 1990. Effectiveness of phytoplankton control by large-bodied and small-bodied zooplankton. Hydrobiologia 200/201: 43–47.

    Google Scholar 

  • Dawidowicz, P & Z. M. Gliwicz, 1987. Biomanipulation. III. The role of direct and indirect relationship between phytoplankton and zooplankton. Wiadomosci Ekolog. 33: 259–277.

    Google Scholar 

  • Dawidowicz, P., Z. M. Gliwicz & R. D. Gulati, 1988. CanDaphnia prevent a blue-green algal bloom in hypertrophic lakes? A laboratory test. Limnologica (Berlin) 19, 1: 21–26.

    Google Scholar 

  • De Bernardi, R. & G. Giussani, 1978. Effect of mass fish mortality on zooplankton structure and dynamics in a small Italian lake (Lago di Annone). Verh. int. Ver. Limnol. 20: 1045–1048.

    Google Scholar 

  • De Bernardi, R., G. Giussani & E. Lasso Pedretti, 1981. The significance of blue-green algae as food for filter-feeding zooplankton: experimental studies onDaphnia spp. fed byMicrocystis aeruginosa. Verh. int. Ver. Limnol. 21: 477–483.

    Google Scholar 

  • DeMott, W. R., 1989. The role of food limitation and competition in zooplankton seasonal succession. In U. Sommer (ed.), Plankton ecology: Succession in planktonic communities. Springer, Heidelberg: 195–252.

    Google Scholar 

  • Dodson, S. I., 1974. Zooplankton competition and predation: An experimental test of the size-efficiency hypothesis. Ecology 55: 605–613.

    Article  Google Scholar 

  • Edmondson, W. T. & A. H. Litt, 1982.Daphnia in Lake Washington. Limnol. and Oceanogr. 27: 272–293.

    Google Scholar 

  • Elliott, E. T., D. Casranares, D. Perlmutter & K. G. Porter, 1983. Trophic level control of production and nutrient dynamics in experimental planktonic community. Oikos 41: 7–16.

    Article  Google Scholar 

  • Fott, J., L. Pechar & M. Prazakova, 1980. Fish as a factor controlling water quality in ponds. Dev. Hydrobiol. 2: 255–261.

    CAS  Google Scholar 

  • Fretwell, S. F., 1977. The regulating of plant communities by the food chains exploiting them. Persp. Biol. Med. 20: 169–185.

    Google Scholar 

  • Fulton III, R. S., 1988. Grazing on filamentous algae by herbivorous zooplankton. Freshwat. Biol. 20: 263–271.

    Article  Google Scholar 

  • Fulton III, R. S. & M. W. Pearl, 1988. Effects of blue-green algaeMicrocystis aeruginosa on zooplankton competitive relations. Oecologia (Berlin) 76: 383–389.

    Google Scholar 

  • Geller, W. & H. Muller, 1981. The filtration apparatus of Cladocera: Filter mesh-sizes and their implications on food selectivity. Oecologia (Berlin) 49: 316–321.

    Article  Google Scholar 

  • Gliwicz, Z. M., 1969. Studies on the feeding of pelagic zooplankton in lakes with varying trophy. Ekol. pol. A. 17: 65–708.

    Google Scholar 

  • Gliwicz, Z. M., 1975. Effect of zooplankton grazing on photosynthetic activity and composition of phytoplankton. Verh. int. Ver. Limnol. 19: 1490–1497.

    Google Scholar 

  • Gliwicz, Z. M., 1977. Food size selection and seasonal succession of filter feeding zooplankton in an eutrophic lake. Ekol. pol. 25: 179–225.

    Google Scholar 

  • Gliwicz, Z. M., 1980. Filtering rates, food size selection, and feeding rates in cladocerans — another aspect of interspecific competition in filter-feeding zooplankton. In W. C. Kerfoot (ed.), Evolution and ecology of zooplankton communities, University Press of New England, Hanover: 282–291.

    Google Scholar 

  • Gliwicz, Z. M., 1985. Predation of food limitation: an ultimate reason for extinction of planktonic cladoceran species. Arch. Hydrobiol. Beih. Ergebn. Limnol. 21: 419–430.

    Google Scholar 

  • Gliwicz, Z. M., 1990. Food thresholds and body size in cladocerans. Nature 343: 638–640.

    Article  Google Scholar 

  • Gliwicz, Z. M., in press.Daphnia growth at different concentrations of cyanobacteria filaments. Arch. Hydrobiol.

  • Gliwicz, Z. M. & W. Lampert, in press. Food thresholds in threeDaphnia species in the absence and in the presence of blue-green filaments. Ecology.

  • Gliwicz, Z. M. & J. Pijanowska, 1989. The role of predation in zooplankton succession. In U. Sommer (ed.), Plankton ecology: Succession in planktonic communities. Springer, Heidelberg: 253–296.

    Google Scholar 

  • Gliwicz, Z. M. & E. Siedlar, 1980. Food size limitation and algae interferring with food collection inDaphnia. Arch. Hydrobiol. 88: 155–177.

    Google Scholar 

  • Goad, J., 1984. A biomanipulation experiment in Green Lake, Seattle, Washington. Arch. Hydrobiol. 102: 137–153.

    Google Scholar 

  • Hanazato, T. & M. Yasuno, 1984. Growth, reproduction and assimilation ofMoina macropoda fed onMycrocystis and/orChlorella. Jap. J. Ecol. 34: 195–202.

    Google Scholar 

  • Haney, J. F., 1987. Field studies on zooplankton-cyanobacteria interactions. N.Z.J. mar. Freshwat. Res. 21: 467–475.

    Google Scholar 

  • Hanski, I. & E. Ranta, 1983. Coexistence in a patchy environment: three species ofDaphnia in rock pools. J. anim. Ecol. 52: 263–279

    Article  Google Scholar 

  • Hartman, H. J., 1985. Feeding ofDaphnia pulicaria andDiaptomus ashlandi on mixtures of unicellular and filamentous algae. Verh. int. Ver. Limnol. 22: 3178–3183.

    Google Scholar 

  • Hawkins, P. & W. Lampert, in press. The effect ofDaphnia body size on filtering rate inhibition, in the presence of a filamentous cyanobacterium. Limnol. Oceanogr.

  • Holm, N. P., G. G. Ganf & J. Shapiro, 1983. Feeding and assimilation rates ofDaphnia pulex fedAphanizomenon flos-aquae. Limnol. Oceanogr. 28: 677–687.

    Google Scholar 

  • Holm, N. P. & J. Shapiro, 1984. An examination of lipid reserves and the nutritional status ofDaphnia pulex fedAphanizomenon flos-aquae. Limnol. Oceanogr. 29: 1137–1140.

    Google Scholar 

  • Hrbáček, J., 1962. Species composition and amount of the zooplankton in relation to the fish stock. Rozpr. Česk. Akad. Ved, Rada Mat. Prir. Ved, 10: 1–116.

    Google Scholar 

  • Hrbáček, J., B. Desortova & J. Popovsky, 1978. Influence of the fish stock on the phosphorus-chlorophyll ratio. Verh. int. Ver. Limnol. 20: 1624–1628.

    Google Scholar 

  • Infante, A., 1973. Untersuchungen über die Ausnutzbarkeit verschledener Algen durch das Zooplankton. Arch. Hydrobiol., Suppl. 42: 340–405.

    Google Scholar 

  • Infante, A. & S. E. B. Abella, 1985. Inhibition ofDaphnia byOscillatoria in Lake Washington. Limnol. Oceanogr. 30: 1046–1052.

    Google Scholar 

  • Infante, A. & W. Riehl, 1984. The effect ofCyanophyta upon zooplankton in a eutrophic tropical lake. Hydrobiologia 113: 293–298.

    Article  Google Scholar 

  • Knisely, K. & W. Geller, 1986. Selective feeding of four zooplankton species on natural lake phytoplankton. Oecologia (Berlin) 69: 86–94.

    Article  Google Scholar 

  • Lampert, W., 1978. Climatic conditions and planktonic interactions as factors controlling the regular succession of spring algal bloom and extremely clear water in Lake Constance. Verh. int. Ver. Limnol. 20: 969–974.

    Google Scholar 

  • Lampert, W., 1981. Inhibitory and toxic effects of blue-green algae onDaphnia. Int. Revue ges. Hydrobiol. 66: 285–298.

    Google Scholar 

  • Lampert, W., 1982. Further studies on the inhibitory effects of toxic blue-greenMicrocystis aeruginosa on the filtering rate of zooplankton. Arch. Hydrobiol. 95: 207–220.

    Google Scholar 

  • Lampert, W., 1987. Laboratory studies on zooplankton-cyanobacteria interactions. N.Z.J. mar. Freshwat. Res. 21: 483–490.

    Article  Google Scholar 

  • Lampert, W., 1988. The relationship between zooplankton biomass and grazing. A review. Limnologica (Berlin) 19,1: 1–20.

    Google Scholar 

  • Lehman, J. T., 1980. Release cycling of nutrients between planktonic algae and herbivores. Limnol. Oceanogr. 25: 620–632.

    CAS  Google Scholar 

  • Lynch, M., 1977. Fitness and optimal size in zooplankton populations. Ecology 58: 763–774.

    Article  Google Scholar 

  • Lynch, M., 1979. Predation, competition, and zooplankton structure: An experimental study. Limnol. Oceanogr. 24: 253–272.

    Google Scholar 

  • Lynch, M., 1980.Aphanizomenon blooms: Alternate control and cultivation byDaphnia pulex in W. C. Kerfoot (ed.), Evolution and ecology of zooplankton communities, University Press of New England, Hanover: 229–304.

    Google Scholar 

  • Lynch, M. & J. Shapiro, 1981. Predation, enrichment and phytoplankton community structure. Limnol. Oceanogr. 26: 86–102.

    Google Scholar 

  • McQueen, D. J., J. R. Post & E. L. Mills, 1986. Trophic relationships in freshwater ecosystems. Can. J. Fish. aquat. Sci. 43: 1571–1581.

    Article  Google Scholar 

  • Nizan, S., C. Dimentman & M. Shilo, 1986. Acute toxic effects of cyanobacteriumMicrocystis aeruginosa onDaphnia magna. Limnol. Oceanogr. 31: 497–502.

    Google Scholar 

  • Peters, R. H., 1975. Phosphorus excretion and the measurement of feeding and assimilation by zooplankton. Limnol. Oceanogr. 20: 858–859.

    CAS  Google Scholar 

  • Porter, K. G., 1973. Selective grazing and differential digestion of algae by zooplankton. Nature 244: 179–180.

    Article  Google Scholar 

  • Porter, K. G., 1977. The plant-animal interface in freshwater ecosystems. Am. Sci. 65: 159–70.

    Google Scholar 

  • Porter, K. G. & R. McDonough, 1984. the energetic cost of response to blue-green algae filaments by cladocerans. Limnol. Oceanogr. 29: 365–369.

    Google Scholar 

  • Porter, K. G., & J. D. Orcutt, 1980. Nutritional adequacy, manage-ability, and toxicity as factors that determine the food quality of green and blue-green algae forDaphnia. In W. C. Kerfoot (ed.), Evolution and ecology of zooplankton communities. University Press of New England, Hanover: 268–281.

    Google Scholar 

  • Reinertsen, H. & Y. Olsen, 1984. Effects of fish elimination on the phytoplankton community of an eutrophic lake. Verh. int. Ver. Limnol. 22: 649–657.

    Google Scholar 

  • Richman, S. & S. I. Dodson, 1983. The effect of food quality on feeding and respiration by ‘UDaphnia`u and ‘UDiaptomus`u. Limnol. Oceanogr. 28: 948–956.

    Article  Google Scholar 

  • Romanovsky, Y. E., 1984. Individual growth rate as a measure of competitive adventages in cladoceran crustaceans. Int. Revue ges. Hydrobiol. 69: 613–632.

    Google Scholar 

  • Romanovsky, Y., 1985. Food limitation and life-history strategies in cladoceran crustaceans. Arch. Hydrobiol. Beih. Ergebn. Limnol. 21: 363–372.

    Google Scholar 

  • Scharf, E. M., P. V. Spittler & J.-A. Oertzen, 1979. Zum Einfluss vonMycrocystis aeruginosa (Cyanophyta) auf das Populationswachstum vonChydorus sphaericus (Cladocera). Wissenschaftl. Zeitschr. d. Univers. Rostock 28: 531–534.

    Google Scholar 

  • Schindler, D. W. & G. W. Comita, 1972. The dependence of primary production upon physical and chemical factors in a small senescing lake, including the effects of complete water oxygen depletion. Arch. Hydrobiol. 69: 413–451.

    Google Scholar 

  • Shapiro, J., D. I. Wright, 1984. Lake restauration by biomanipulation — Round Lake, Minnesota. Freshwat. Biol. 14: 371–383.

    Article  Google Scholar 

  • Shapiro, J., B. Forsberg, V. Lamarra, G. Lindmark, M. Lynch, E. Smeltzer & G. Zoto, 1982. Experiments and experiences in biomanipulation: Studies of ways to reduce algal abundance and eliminate blue-green. Interim. Rep. No. 19, Limnol. Res. center, Univ. of Minnesota, Minneapolis, 251 pp.

    Google Scholar 

  • Smith, F. E., 1969. Effects of enrichment in mathematical models. In Eutrophication: causes, consequences, correctives. Nat. Acad. Sci. Publ. 1700: 124–129.

    Google Scholar 

  • Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol. 106,4: 433–471.

    Google Scholar 

  • Sorokin, Yu. I., A. V. Monakov, Ye. D. Morduchaj-Boltovskaja, E. A. Tsichon-Lucanina & R. A. Rodova, 1965. Experiments on the applicability of the radiocarbon method for studying the trophic role of blue-green algae. Akad. Nauk. SSSR. Institut Biol. Vnutrenn. Vod: 235–240.

  • Stenson, J. A. E., T. Bohlin, L. Henrikson, B. J. Nilsson, H. G. Nyman, H. G. Oscarson & P. Larsson, 1978. Effect of fish removal from a small lake. Verh. int. Ver. Limnol. 20: 794–801.

    Google Scholar 

  • Sterner, R. W., 1986. Herbivores' direct and indirect effects on algal populations. Science 231: 605–607.

    Article  PubMed  CAS  Google Scholar 

  • Tessier, A. J. & C. E. Goulden, 1987. Cladoceran juvenile growth. Limnol. Oceanogr. 32: 680–686.

    Google Scholar 

  • Thompson, J. M., A. J. D. Ferguson & C. S. Reynolds, 1982. Natural filtration rates of zooplankton in a closed system: the derivation of a community grazing index. J. Plankton Res. 4: 545–560.

    Google Scholar 

  • Therlkeld, S. T., 1981. The midsummer dynamics of twoDaphnia species in Wintergreen Lake, Michigan. Ecology 60: 165–179.

    Article  Google Scholar 

  • Therlkeld, S. T., 1985. Resource variation and the initiation of midsummer declines of cladoceran populations. Arch. Hydrobiol. Beih. ergebn. Limnol. 21: 333–340.

    Google Scholar 

  • Tillmann, U. & W. Lampert, 1984. Competitive ability of differently sizedDaphnia species: An experimental test. J. Freshwat. Ecol. 2: 311–323.

    Google Scholar 

  • Vaga, R. M., D. A. Culver & C. A. Munch, 1985. The fecundity ratios ofDaphnia andBosmina as a function of inedible algal standing drop. Verh. int. Ver. Limnol. 22: 3072–3075.

    Google Scholar 

  • Webster, K. E. & R. H. Peters, 1978. Some size-dependent inhibitions of larger cladoceran filters in filamentous suspensions. Limnol. Oceanogr. 23: 1238–1245.

    Article  Google Scholar 

  • Zankai, N. P., 1983. Ingestion rates of someDaphnia species in a shallow lake (Lake Balaton, Hungary). Int. Revue ges. Hydrobiol. 68: 227–237.

    Google Scholar 

  • Zankai, N. P. & J. E. Ponyi, 1986. Composition, density and feeding of crustacean zooplankton community in a shallow, temperate lake (Lake Balaton, Hungary). Hydrobiologia 135: 131–147.

    Article  Google Scholar 

  • Zaret, T. M., 1980. Predation and freshwater communities. Yale Univ. Press, New Haven, 180 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gliwicz, Z.M. Why do cladocerans fail to control algal blooms?. Hydrobiologia 200, 83–97 (1990). https://doi.org/10.1007/BF02530331

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02530331

Key words

Navigation