Hydrobiologia

, Volume 200, Issue 1, pp 69–82 | Cite as

The zooplankton-phytoplankton interface in lakes of contrasting trophic status: an experimental comparison

  • James J. Elser
  • Heath J. Carney
  • Charles R. Goldman
Part Two: Zooplankton-Phytoplankton Interactions

Abstract

We report here the results of an experimental study designed to compare algal responses to short-term manipulations of zooplankton in three California lakes which encompass a broad range of productivity (ultra-oligotrophic Lake Tahoe, mesotrophic Castle Lake, and strongly eutrophic Clear Lake). To assess the potential strength of grazing in each lake, we evaluated algal responses to a 16-fold range of zooplankton biomass. To better compare algal responses among lakes, we determined algal responses to grazing by a common grazer (Daphnia sp.) over a range ofDaphnia densities from 1 to 16 animals per liter. Effects of both ambient grazers andDaphnia were strong in Castle Lake. However, neither ambient zooplankton norDaphnia had much impact on phytoplankton in Clear Lake. In Lake Tahoe, no grazing impacts could be demonstrated for the ambient zooplankton butDaphnia grazing had dramatic effects. These results indicate weak coupling between phytoplankton and zooplankton in Clear Lake and Lake Tahoe, two lakes which lie near opposite extremes of lake trophic status for most lakes. These observations, along with work reported by other researchers, suggest that linkages between zooplankton and phytoplankton may be weak in lakes with either extremely low or high productivity. Biomanipulation approaches to recover hypereutrophic lakes which aim only to alter zooplankton size structure may be less effective if algal communities are dominated by large, inedible phytoplankton taxa.

Key words

biomanipulation eutrophication grazing zooplankton phytoplankton trophic status 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benndorf, J., H. Kneschke, K. Kossatz & E. Penz, 1984. Manipulation of the pelagic food web by stocking with predacious fishes. Int. Revue ges. Hydrobiol. 69: 407–428.Google Scholar
  2. Bergquist, A. M. & S. R. Carpenter, 1986. Grazing of phytoplankton: effects on species' growth rates, phosphorus limitation, chlorophyll, and primary production. Ecology 67: 1351–1360.CrossRefGoogle Scholar
  3. Bergquist, A. M., S. R. Carpenter & J. C. Latino, 1985. Shifts in phytoplankton size structure and community composition during grazing by contrasting zooplankton assemblages. Limnol. Oceanogr. 30: 1037–1045.Google Scholar
  4. Burns, C. W., 1969. Relation between filtering rate, temperature, and body size in four species ofDaphnia. Limnol. Oceanogr. 14: 693–700.Google Scholar
  5. Burns, C. W., 1968. The relationship between body size of filter-feeding Cladocera and the maximum size of particle ingested. Limnol. Oceanogr. 13: 675–678.Google Scholar
  6. Byron, E. R., C. L. Folt & C. R. Goldman, 1984. Copepod and cladoceran success in an oligotrophic lake. J. Plankton Res. 6: 45–65.Google Scholar
  7. Byron, E. R., P. E. Sawyer & C. R. Goldman, 1986. The recurrence ofDaphnia rosea in Lake Tahoe: analysis of a population pulse. J. Plankton Res. 8: 771–783.Google Scholar
  8. Carney, H. J. & J. J. Elser, 1990. Strength of zooplankton-phytoplankton coupling in relation to lake trophic state. In: M. Tilzer and C. Serruya, (eds.), Ecological Structure and Function in Large Lakes. Science Tech. Publishers, Madison, WI.Google Scholar
  9. Carney, H. J., P. J. Richerson, C. R. Goldman & R. C. Richards, 1988. Seasonal phytoplankton demographic processes and experiments on interspecific competition. Ecology 69: 664–678.CrossRefGoogle Scholar
  10. Crowder, L. B., R. W. Drenner, W. C. Kerfoot, D. J. McQueen, E. L. Mills, U. Sommer, C. N. Spencer & M. J. Vanni, 1988. Food web interactions in lakes. In: S. R. Carpenter (ed.), Complex Interactions in Lake Communities. Springer-Verlag, New York: 141–160.Google Scholar
  11. DeBernardi, R., 1981. Biotic interactions in freshwater and effects on community structure. Boll. zool. ital. 48: 353–371.CrossRefGoogle Scholar
  12. Dorazio, R. M., J. A. Bowers & J. T. Lehman, 1987. Food-web manipulations influence grazer control of phytoplankton growth rates in Lake Michigan. J. Plankton Res. 9: 891–899.Google Scholar
  13. Downing, J. A. & F. H. Rigler, 1986. A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters. Blackwell.Google Scholar
  14. Elser, J. J. & C. R. Goldman, in press. Experimental separation of the direct and indirect effects of herbivorous zooplankton on phytoplankton in a subalpine lake. Verh. int. Ver. Limnol. 24.Google Scholar
  15. Elser, J. J. & N. A. MacKay, 1989. Experimental evaluation of effects of zooplankton biomass and size distribution on algal biomass and productivity in three nutrient-limited lakes. Arch. Hydrobiol. 114: 481–496.Google Scholar
  16. Elser, J. J., M. M. Elser, N. A. MacKay & S. R. Carpenter, 1988. Zooplankton-mediated transitions between N and P limited algal growth. Limnol. Oceanogr. 33: 1–14.Google Scholar
  17. Elser, J. J., N. C. Goff, N. A. MacKay, A. L. St. Amand, M. M. Elser & S. R. Carpenter, 1987. Species-specific algal responses to zooplankton: experimental and field observations in three north temperate lakes. J. Plankton Res. 9: 699–717.Google Scholar
  18. Gliwicz, Z. M., 1969. Studies of the feeding of pelagic zooplankton in lakes with varying trophy. Ekol. Pol. A. 17: 665–708.Google Scholar
  19. Gliwicz, Z. M., 1975. Effect of zooplankton grazing on photosynthetic activity and composition of phytoplankton. Verh. int. Ver. Limnol. 19: 1490–1497.Google Scholar
  20. Goldman, C. R., 1972. The role of minor nutrients in limiting the production of aquatic ecosystems. Limnol. Oceanogr. Spec. Symp. 1: 21–38.Google Scholar
  21. Goldman, C. R., 1978. The use of natural phytoplankton assemblages in bioassay. Mitt. int. Ver. Limnol. 21: 364–371.Google Scholar
  22. Goldman, C. R., 1981. Lake Tahoe: two decades of change in a nitrogen-deficient oligotrophic lake. Verh. int. Ver. Limnol. 21: 45–70.Google Scholar
  23. Goldman, C. R. & R. C. Carter, 1965. An investigation by rapid carbon-14 bioassay of factors affecting the cultural eutrophication of Lake Tahoe, California-Nevada. Journal WPCF 37: 1044–1059.Google Scholar
  24. Goldman, C. R. & E. De Amezaga, 1984. Primary productivity and precipitation at Castle Lake and Lake Tahoe during twenty-four years, 1959–1982. Verh. int. Ver. Limnol. 22: 591–599.Google Scholar
  25. Goldman, C. R., A. Jassby & T.M. Powell, 1989. Inter-annual fluctuations in primary production: impact of climate and weather at two subalpine lakes. Limnol. Oceanogr. 34: 310–323.Google Scholar
  26. Goldman, C. R., M. D. Morgan, S. T. Threlkeld & N. Angeli, 1979. A population dynamics analysis of the cladoceran disappearance from Lake Tahoe, California-Nevada. Limnol. Oceanogr. 24: 289–297.Google Scholar
  27. Goldman, C. R. & R. G. Wetzel, 1963. A study of the primary productivity of Clear Lake, Lake County, California. Ecology 44: 283–294.CrossRefGoogle Scholar
  28. Havens, K. & J. DeCosta, 1985. An analysis of selective herbivory in an acid lake and its importance in controlling phytoplankton community structure. J. Plankton Res. 7: 207–222.Google Scholar
  29. Horne, A. J., 1975. The ecology of Clear Lake phytoplankton. Clear Lake Algal Research Unit, 116 pp.Google Scholar
  30. Janik, J. J., 1988. Zooplankton-phytoplankton interactions with emphasis on nutrient recycling in Castle Lake, California. Ph.D. Thesis, University of California-Davis, 187 pp.Google Scholar
  31. Korstad, J. E., 1980. Laboratory and field studies of zooplankton-phytoplankton interaction. Ph.D. Thesis, Univ. Michigan, Ann Arbor.Google Scholar
  32. Lallatin, R. D., 1975. Clear Lake water quality data. California Department of Water Resources, Northern District, Red. Bluff, CA. 321 pp.Google Scholar
  33. Lane, J. L., 1983. The responses of different size classes of phytoplankton to nutrient enrichment in oligotrophic lakes. M.S. Thesis, University of California-Davis. 158 pp.Google Scholar
  34. LeGendre, L., S. Demers, C. M. Yentsch & C. S. Yentsch, 1983. The14C-method: patterns of dark CO2 fixation and DCMU correction to replace the dark bottle. Limnol. Oceanogr. 28: 996–1003.Google Scholar
  35. Lehman, J. T. & C. D. Sandgren, 1985. Species-specific rates of growth and grazing loss among freshwater algae. Limnol. Oceanogr. 21: 501–516.Google Scholar
  36. Lehman, J. T. & D. Scavia, 1982. Microscale patchiness of nutrients in plankton communities. Science. 216: 729–730.CrossRefPubMedGoogle Scholar
  37. Lynch, M. & J. Shapiro, 1981. Predation, enrichment, and phytoplankton community structure. Limnol. Oceanogr. 26: 86–102.Google Scholar
  38. Marker, A. F., C. A. Crowther & R. J. M. Gunn, 1980. Methanol and acetone as solvents for estimating chlorophyll-a and phaeopigments by spectrophotometry. Ergeb. Limnol. 14: 52–69.Google Scholar
  39. McCauley, E. & E. Briand, 1979. Zooplankton grazing and phytoplankton species richness: field tests of the predation hypothesis. Limnol. Oceanogr. 24: 243–253.Google Scholar
  40. McCauley, E. & J. Kalff, 1987. Effects of changes in zooplankton on orthophosphate dynamics of natural phytoplankton communities. Can. J. Fish. aquat. Sci. 44: 176–182.Google Scholar
  41. McQueen, D. J., J. R. Post & E. L. Mills, 1986. Trophic relationships in freshwater pelagic ecosystems. Can. J. Fish. aquat. Sci. 43: 1571–1581.CrossRefGoogle Scholar
  42. Miller, W. E., T. E. Maloney & J. C. Greene, 1974. Algal productivity in 49 lake waters as determined by algal assays. Wat. Res. 8: 667–679.CrossRefGoogle Scholar
  43. Oksanen, L., S. D. Fretwell, J. Arruda & P. Niemela, 1981. Exploitation systems in gradients of primary productivity. Am. Nat. 118: 240.CrossRefGoogle Scholar
  44. Persson, L., G. Andersson, S. F. Hamrin & L. Johansson, 1988. Predator regulation and primary production along the productivity gradient of temperate lake ecosystems. In: S. R. Carpenter (ed.), Complex Interactions in Lake Communities. Springer-Verlag, New York: 45–68.Google Scholar
  45. Porter, K. G. & R. McDonough, 1984. The energetic cost of response to blue-green algal filaments by cladocerans. Limnol. Oceanogr. 29: 365–369.CrossRefGoogle Scholar
  46. Redfield, G. W., 1980. The effect of zooplankton on phytoplankton productivity in the epilimnion of a subalpine lake. Hydrobiologia 70: 217–224.CrossRefGoogle Scholar
  47. Redfield, G. W. & C. R. Goldman, 1978. Diel vertical migration and dynamics of zooplankton biomass in the epilimnion of Castle Lake, California. Verh. int. Ver. Limnol. 20: 381–387.Google Scholar
  48. Richards, R. C., C. R. Goldman, T. C. Frantz & R. Wickwire, 1975. Where have all theDaphnia gone? The decline of a major cladoceran in Lake Tahoe, California-Nevada. Verh. int. Ver. Limnol. 19: 835–842.Google Scholar
  49. Roberts, D. G. & D. M. Smith, 1988. Infrared gas analysis of both gaseous and dissolved CO2 in small volume marine samples. Limnol. Oceanogr. 33: 135–140.Google Scholar
  50. Scavia, D. & G. L. Fahnenstiel, 1987. Dynamics of Lake Michigan phytoplankton: mechanisms controlling epilimnetic communities. J. Great Lakes Res. 13: 103–120.Google Scholar
  51. Schoenberg, S. A. & R. E. Carlson, 1984. Direct and indirect effects of zooplankton grazing on phytoplankton in a hypereutrophic lake. Oikos 42: 291–302.CrossRefGoogle Scholar
  52. Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol. 106: 433–471.Google Scholar
  53. Spencer, C. N. & D. L. King, 1987. Regulation of blue-green algal buoyancy and bloom formation by light, inorganic nitrogen, CO2, and trophic level interactions. Hydrobiologia 144: 183–192.CrossRefGoogle Scholar
  54. Sterner, R. W., 1986. Herbivores' direct and indirect effects on algal populations. Science 231: 605–607.CrossRefPubMedGoogle Scholar
  55. Strickland, J. D. & T. R. Parsons, 1968. A practical handbook of seawater analysis. Bull. Fish. Res. Bd Can.: 167.Google Scholar
  56. Vanni, M. J., 1987. Effects of nutrients and zooplankton size on the structure of a phytoplankton community. Ecology 68: 624–635.CrossRefGoogle Scholar
  57. Van Donk, E., R. D. Gulati & M. P. Grimm, 1989. Food web manipulation in Lake Zwemlust: positive and negative effects during the first two years. Hydrobiol. Bull. 23: 19–34.CrossRefGoogle Scholar
  58. Wurtsbaugh, W. A., 1983. Internal and external controls on plankton abundance in a large eutrophic lake: Clear Lake, California. Ph.D. thesis, University of California-Davis, 118 pp.Google Scholar
  59. Wurtsbaugh, W. A. & A. J. Horne, 1983. Iron in eutrophic Clear Lake, California: its importance for algal nitrogen fixation and growth. Can. J. Fish. aquat. Sci. 40: 1419–1429.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • James J. Elser
    • 1
  • Heath J. Carney
    • 1
  • Charles R. Goldman
    • 1
  1. 1.Graduate Group in Ecology, and Division of Environmental StudiesUniversity of California-DavisDavisUSA

Personalised recommendations