, Volume 200, Issue 1, pp 29–41 | Cite as

Are blue-green algae a suitable food for zooplankton? An overview

  • R. de Bernardi
  • G. Giussani
Part Two: Zooplankton-Phytoplankton Interactions


One of the reasons suggested to explain the dominance of blue-greens in eutrophic lakes is that they are not used as food by zooplankton; and even when ingested, they are poorly utilized.

An increase in herbivores might be the expected result of biomanipulation of the aquatic food chain. This attempt at controlling the algae population is, however, destined to fail if zooplankton do not also utilize blue-greens as food. In this respect, a series of in-lake experimental results indicates that after the food chain has been biomanipulated, there is a decrease in blue-green density in periods when there is an increase in herbivores. Is this only an accidental result or are the two facts interrelated; in other words, can the decrease in the density of blue-greens be attributed to the increased use of them by zooplankton herbivores?

The suitability of blue-greens as food for zooplankton has been widely investigated by many authors with contrasting and inconclusive results. Two main factors seem to play important role in determining their suitability as food: the biochemical properties of the different species, or even different strains of the same species; and the shape and size of the colonies.

In particular, biochemical properties can result in toxic effects on zooplankton, while size and shape may strongly interfere with filtering, thus reducing the possibility of gathering food.

Key words

blue-green zooplankton Grazing biomanipulation trophic interactions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersson, G., H. Berggren, G. Cronberg & C. Gelin, 1978. Effect of planktivorous and benthivorous fish on organisms and water chemistry in eutrophic lakes. Hydrobiologia 59: 9–15.CrossRefGoogle Scholar
  2. Arnold, D. E., 1971. Ingestion, assimilation, survival and reproduction byDaphnia pulex fed seven species of blue-green algae. Limnol. Oceanogr. 16: 906–920.Google Scholar
  3. Blazka, P., 1966. Metabolism of natural and cultured population ofDaphnia related to secondary production. Verh. int. Ver. Limnol. 16: 380–385.Google Scholar
  4. Brooks, J. L. & S. I. Dodson, 1965. Predation, body size and composition of plankton. Science 150: 28–35.CrossRefPubMedGoogle Scholar
  5. Burns, C. V., 1968. Direct observation of mechanisms regulating feeding behaviour ofDaphnia in lake water. Int. Revue ges. Hydrobiol. 53: 83–100.Google Scholar
  6. Carmichael, W. W. & P. R. Gorham, 1977. Factors influencing the toxicity and animal susceptibility ofAnabaena flos-aquae (Cyanophyta) blooms. J. Phycol. 13: 97–101.CrossRefGoogle Scholar
  7. Carmichael, W. W. & P. R. Gorham, 1978. Anatoxins from clones ofAnabaena flos-aquae isolated from lakes in Western Canada. Mitt. int. Ver. Limnol. 21: 285–295.Google Scholar
  8. de Bernardi, R., 1989. Biomanipulation of aquatic food chains to improve water quality in eutrophic lakes. In Ravera, O. (ed.) Ecological assessment of environmental degradation, pollution and recovery, Elsevier Sci. Publ., Amsterdam: 195–215.Google Scholar
  9. de Bernardi, R. & G. Giussani, 1978. The effect of mass fish mortality on zooplankton structure and dynamics in a small italian lake (Lago di Annone). Verh. int. Ver. Limnol. 20: 1045–1048.Google Scholar
  10. de Bernardi, R., G. Giussani & E. Lasso Pedretti, 1981. The significance of blue-green algae for filter-feeding zooplankton: experimental studies onDaphnia spp. fedMicrocystis aeruginosa. Verh. int. Ver. Limnol. 21: 477–483.Google Scholar
  11. de Bernardi, R., G. Giussani & E. Lasso Pedretti, 1982. Selective feeding of zooplankton with special reference to blue-green algae in enclosure experiment. Paper presented at: ‘Plankton Ecology Group Annual Meeting’ Trondheim (Norway), 23–28 Aug. 1982.Google Scholar
  12. Eloff, J. N. & J. Van Der Westhuizen, 1981. Toxicological studies onMicrocystis. In: W. W. Carmichael (ed.), The water environment algal toxins and health. Plenum: 343–364.Google Scholar
  13. Fulton III. R. S., 1988. Resistance to blue-green algal toxins byBosmina longirostris. J. Plankton Res. 10: 771–778.Google Scholar
  14. Fulton III, R. S. & H. W. Paerl, 1987. Effect of colonial morphology on zooplankton utilization of algal resources during blue-green algal (Microcystis aeruginosa) blooms. Limnol. Oceanogr. 32: 634–644.Google Scholar
  15. Fulton III, R. S. & H. W. Paerl, 1988. Zooplankton feeding selectivity for unicellular and colonialMicrocystis aeruginosa. Bull. mar. Sci. 43: 500–508.Google Scholar
  16. Gliwicz, Z. M., 1969. Studies on the feeding of pelagic zooplankton in lakes with varying trophy. Ekol. pol. 17: 663–708.Google Scholar
  17. Gliwicz, Z. M., 1977. Food size selection and seasonal succession of filter-feeding zooplankton in an eutrophic lake. Ekol. pol. 25: 179–225.Google Scholar
  18. Gliwicz, Z. M. & E. Siedlar, 1980. Food size limitation and algae interfering with food collection inDaphnia. Arch. Hydrobiol. 88: 155–177.Google Scholar
  19. Goldman J. C., W. J. Oswald & D. Jenkins, 1974. The kinetiks of inorganic carbon limited algal growth. J. Wat. Pollut. Cont. Fed. 46: 1359–1366.Google Scholar
  20. Gras, R., A. Eitls & L. Saint Jan, 1971. Biologie des crustacés du Lac Tchad. II. Régime alimentaire des entomostracés planctoniques. Cahiers ORSTOM Ser. Hydrobiologie, 5: 285–296.Google Scholar
  21. Hanazato, T. & M. Yasuno, 1984. Growth, reproduction and assimilation ofMoina macrocopa fedMicrocystis aeruginosa and/orChlorella. Jap. J. Ecol. 34: 195–202.Google Scholar
  22. Hanazato, T., M. Yasuno, T. Iwakuma & N. Takamura, 1984. Seasonal changes in the occurrence ofBosmina longirostris andBosmina fatalis in relation toMicrocystis bloom in Lake Kasumigaura. Jap. J. Limnol. 45: 153–157.Google Scholar
  23. Haney, J. F., 1987. Field studies on zooplankton. Cyanobacteria interactions. N.Z.J. mar. Freshwat. Res. 21: 467–475.Google Scholar
  24. Hartmann, H. J., 1985. Feeding ofDaphnia pulicaria andDiaptomus ashlandi on mixtures of unicellular and filamentous algae. Verh. int. Ver. Limnol. 22: 3178–3183.Google Scholar
  25. Holm, N. P. & J. Shapiro, 1984. Examination of lipid reserves and the nutritional status ofDaphnia pulex fedAphanizomenon flos-aquae. Limnol. Oceanogr. 29: 1137–1140.Google Scholar
  26. Horn, A. J., 1979. Management of lakes containing N2 fixing blue-green algae. Arch. Hydrobiol. 13: 133–144.Google Scholar
  27. Infante, A. & S. E. Abella, 1985. Inhibition ofDaphnia byOscillatoria in Lake Washington. Limnol. Oceanogr. 30: 1046–1052.Google Scholar
  28. King, D. L., 1970. The role of carbon in eutrophication. J. Wat. Pollut. Cont. Fed. 42: 2035–2051.Google Scholar
  29. Lampert, W., 1977. Studies on the carbon balance ofDaphnia pulex De Geer as related to environmental conditions. II. The dependence of carbon assimilation on animal size, temperature, food concentration and diet species. Arch. Hydrobiol. Suppl. 48: 310–335.Google Scholar
  30. Lampert, W., 1981. Inhibitory and toxic effects of blue green algae onDaphnia. Int. Revue ges. Hydrobiol. 66: 285–298.Google Scholar
  31. Lampert, W., 1982. Further studies on the inhibitory effect of the toxic blue-greenMicrocystis aeruginosa on the filtering rate of zooplankton. Arch. Hydrobiol. 95: 207–220.Google Scholar
  32. Larsson, P., S. Andersen, Y. Borsheim, P. Jakobsen & G. Johnsen, 1985. Individual growth ofDaphnia longispina in the summer decline phase of the population. Arch. Hydrobiol. 21: 341–350.Google Scholar
  33. Lefevre, M., 1950.Aphanizomenon gracile Lem. Cyanophyte defavorable au zooplankton. Ann. Stu. Cent. Hydrobiol. 3: 205–208.Google Scholar
  34. Lynch, M., 1980.Aphanizomenon blooms: alternate control and cultivation byDaphnia pulex. Am. Soc. Limnol. Oceanogr. Spec. Publ. 3: 299–304.Google Scholar
  35. Lynch, M. & J. Shapiro, 1981. Predation, enrichment, and phytoplankton community structure. Limnol. Oceanogr. 26: 86–102.Google Scholar
  36. Mur, L. R., H. J. Gons & L. Van Liere, 1978. Competition for the green algaScenedesmus and the blue-green algaOscillatoria. Mitt. int. Ver. Limnol. 21: 473–479.Google Scholar
  37. Nizan, S., C. Dimentman & M. Shilo, 1986. Acute toxic effect of the cyanobacteriumMicrocystis aeruginosa onDaphnia magna. Limnol. Oceanogr. 31: 497–502.Google Scholar
  38. O'Brien, W. J. & F. De Noyelle, Jr., 1974. Filtering rates ofCeriodaphnia reticulata in pond water of varying phytoplankton concentrations. Am. Midl. Nat. 91: 509–512.CrossRefGoogle Scholar
  39. Ostrofsky, M. L., F. G. Jacobs & J. Rowan, 1983. Evidence for the production of extracellular herbivores deterrents byAnabaena flos-aquae. Freshwat. Biol. 13: 501–506.CrossRefGoogle Scholar
  40. Porter, K. G. & R. McDonough, 1984. The energetic cost of response to blue-green algal filaments by cladocerans. Limnol. Oceanogr. 29: 365–369.Google Scholar
  41. Porter, K. G. & J. D. Orcutt, 1980. Nutritional adequacy, manageability, and toxicity as factors that determine food quality of green and blue-green algae forDaphnia. Am. Soc. Limnol. Oceanogr. Spec. Symp. 3: 268–281.Google Scholar
  42. Reynolds, C. S. & A. E. Walsby, 1975. Water blooms. Biol. Rev. 50: 437–481.Google Scholar
  43. Schoenberg, S. A. & R. E. Carlson, 1984. Direct and indirect effects of zooplankton grazing on phytoplankton in a hypertrophic lake. Oikos 42: 291–302.CrossRefGoogle Scholar
  44. Shapiro, J., 1973. Blue-green algae: why they become dominant. Science 179: 382–384.CrossRefPubMedGoogle Scholar
  45. Shapiro, J., V. Lamarra & M. Lynch, 1975. Biomanipulation: an ecosystem approach to lake restoration. In Brezonic P. L. & J. L. Fox (eds), Proc. Symp. on Water Quality Management Through Biological Control: 85–96.Google Scholar
  46. Schindler, D. W., 1968. Feeding, assimilation, and respiration rates ofDaphnia magna under various environmental conditions. J. anim. Ecol. 37: 369–385.CrossRefGoogle Scholar
  47. Schindler, D. W., 1977. Evolution of phosphorus limitation in lakes. Science 195: 260–262.CrossRefPubMedGoogle Scholar
  48. Smith, V. M., 1986. Light and nutrient effects on the relative biomass of blue-green algae in lake phytoplankton. Can. J. Fish. aquat. Sci. 43: 148–453CrossRefGoogle Scholar
  49. Sorokin, Y. I., 1968. The use of14C in the study of nutrition of aquatic animal. Mitt. int. Ver. Limnol. 16: 41 pp.Google Scholar
  50. Sorokin, Y. I., A. V. Monakov, Y. D. Mordukhaj-Boltovskaja, E. A. Tsichon-Lucanina & R. A. Rodova, 1965. Experiments on the applicability of the radiocarbon method for studying the trophic role of blue-green algae. Akad. Nauk, SSSR, Institut Biol. Vnutren Vod: 235–240.Google Scholar
  51. Spigel, R. H. & J. Imberger, 1987. Mixing processes relevant to phytoplankton dynamics in lakes. N.Z.J. mar. Freshwat. Res. 21: 361–377.CrossRefGoogle Scholar
  52. Starkweather, P. L., 1981. Thropic relationships between the rotifersBrachionus calyciflorus and the blue-green algaAnabaena flos-aquae. Verh. int. Ver. Limnol. 21: 1507–1514.Google Scholar
  53. Thomson, J. M., A. J. D. Ferguson & C. S. Reynolds, 1982. Natural filtration rates of zooplankton in a closed system: the derivation of a community grazing index. J. Plankton Res. 4: 545–560.Google Scholar
  54. Vaga, R., D. A. Culver & C. S. Munch, 1985. The fecundity ratios ofDaphnia andBosmina as a function of inedible algal standing crop. Verh. int. Ver. Limnol. 22: 3072–3075.Google Scholar
  55. Webster, K. E. & R. H. Peters, 1978. Some size-dependent inhibition of larger cladocerans filter in filamentous suspensions. Limnol. Oceanogr. 23: 1238–1245.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • R. de Bernardi
    • 1
  • G. Giussani
    • 1
  1. 1.C.N.R. — Istituto Italiano di IdrobiologiaPallanza (NO)Italy

Personalised recommendations