Skip to main content
Log in

Competitive dominance among Cladocera: Are single-factor explanations enough?

An examination of the experimental evidence

  • Ecology, Population Studies & History
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

I examine several hypotheses for competitive dominance among zooplankton using data from 20 studies containing field and laboratory experiments on competition between cladoceran species.

In threeDaphnia species from rockpools studied in the laboratory, the largeD. magna was the superior competitor at higher food levels and at 15°, while the smallerD. pulex andD. longispina were dominants at low food levels at 20°.D. pulex usually excludedD. longispina. No single-factor hypothesis gives a satisfying explanation for these results.

A review of the literature data suggests that none of the following hypotheses for competitive dominance have sufficient support to be considered general: The size-efficiency hypothesis (supported in 60% of the tests), ther-max hypothesis (68% support), efficiency at low food levels (36% support), and that small species are superior competitors (only 17% support). Competitive ability and susceptibility to predation appear to be positively related (9 out of 10 cases). 76% of the experiments carried out under different environmental conditions showed varying outcomes. Competition between cladocerans should evidently be studied within a multi-factor framework.

Since shifts in competitive advantage with environmental changes were common, the competitive exclusion principle may often not apply in zooplankton assemblages. Non-equilibrium coexistence of competitors in a variable environment, i.e. the paradox of the plankton, is a framework worthy of consideration in zooplankton, and possibly also in many other natural communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrams, P., 1980. Are competition coefficients constant? Inductive versus deductive approaches. Am. Nat. 116: 730–735.

    Article  Google Scholar 

  • Abrams, P., 1984. Variability in resource consumption rates and the coexistence of competing species. Theor. Popul. Biol. 25: 106–124.

    Article  Google Scholar 

  • Allan, J. D., 1974. Balancing predation and competition in cladocerans. Ecology 55: 622–629.

    Article  Google Scholar 

  • Bengtsson, J., 1986. Life histories and interspecific competition between threeDaphnia species in rockpools. J. anim. Ecol. 55: 641–655.

    Article  Google Scholar 

  • Brooks, J. L. & S. I. Dodson, 1965. Predation, body size, and the composition of plankton. Science 150: 28–35.

    Article  PubMed  Google Scholar 

  • Caswell, H., 1978. Predator-mediated coexistence: A none-quilibrium model. Am. Nat. 112: 127–154.

    Article  Google Scholar 

  • Connell, J. H., 1983. On the prevalence and relative importance of interspecific competition: Evidence from field experiments. Am. Nat. 122: 661–696.

    Article  Google Scholar 

  • Cooper, S. D. & D. W. Smith, 1982. Competition, predation and the relative abundances of two species ofDaphnia. J. Plankton Res. 4: 859–879.

    Google Scholar 

  • De Bernardi, R., 1979a. Some problems in the study of population dynamics of zooplankton. Boll. zool. ital. 46: 179–189.

    Article  Google Scholar 

  • De Bernardi, R., 1979b. An experimental approach to the interspecific competition between two species ofDaphnia: D. hyalina andD. pulicaria (Crustacea). Věst. Čes. spol. zool. 43: 81–93.

    Google Scholar 

  • DeMott, W. R., 1983. Seasonal succession in a naturalDaphnia assemblage. Ecol. Monogr. 53: 321–340.

    Article  Google Scholar 

  • DeMott, W. R. & W. C. Kerfoot, 1982. Competition among cladocerans: Nature of the interaction betweenBosmina andDaphnia. Ecology 63: 1949–1966.

    Article  Google Scholar 

  • Dodson, S. I., 1974. Zooplankton competition and predation: An experimental test of the size-efficiency hypothesis. Ecology 55: 605–613.

    Article  Google Scholar 

  • Frank, P. W., 1952. A laboratory study of intraspecies and interspecies competition inDaphnia pulicaria (Forbes) andSimocephalus vetulus (O. F. Müller). Physiol. Zool. 25: 178–204.

    Google Scholar 

  • Frank, P. W., 1957. Coactions in laboratory populations of two species ofDaphnia. Ecology 38: 510–519.

    Article  Google Scholar 

  • Gerritsen, J., 1984. Size efficiency reconsidered: A general foraging model for free-swimming aquatic animals. Am. Nat. 123: 450–467.

    Article  Google Scholar 

  • Ghilarov, A. M., 1984. The paradox of the plankton reconsidered; or, why do species coexist? Oikos 43: 46–52.

    Article  Google Scholar 

  • Gliwicz, Z. M., 1980. Filtering rates, food size selection, and feeding rates in cladocerans — Another aspect of interspecific competition in filter-feeding zooplankton. In W. C. Kerfoot (ed.), Evolution and Ecology of Zooplankton Communities. The University Press of New England, Hanover (N.H.); Lond.: 282–291.

    Google Scholar 

  • Good, A. R., 1981. The ecology and biogeography of tundra zooplankton communities in the Churchill, Manitoba area. M.S. Thesis, University of Windsor, Ontario, Canada.

    Google Scholar 

  • Goulden, C. E., L. L. Henry & A. J. Tessier, 1982. Body size, energy reserves, and competitive ability in three species of Cladocera. Ecology 63: 1780–1789.

    Article  Google Scholar 

  • Goulden, C. E., L. Hornig & C. Wilson, 1978. Why do large zooplankton species dominate? Ver. int. Ver. Limnol. 20: 2457–2460.

    Google Scholar 

  • Hall, D. J., S. T. Threlkeld, C. W. Burns & P. H. Crowley, 1976. The size-efficiency hypothesis and the size structure of zooplankton communities. Ann. Rev. Ecol. Syst. 7: 177–208.

    Article  Google Scholar 

  • Hanski, I. & E. Ranta, 1983. coexistence in a patchy environment: Three species ofDaphnia in rock pools. J. anim. Ecol. 52: 263–279.

    Article  Google Scholar 

  • Hebert, P. D. N., 1977. Niche overlap among species in theDaphnia carinata complex. J. anim. Ecol. 46: 399–409.

    Article  Google Scholar 

  • Hebert, P. D. N., 1978. The population biology ofDaphnia (Crustacea, Daphnidae). Biol. Rev. 53: 387–426.

    Google Scholar 

  • Hebert, P. D. N., 1982. Competition in zooplankton communities. Ann. zool. fenn. 19: 349–356.

    Google Scholar 

  • Hebert, P. D. N. & T. J. Crease, 1980. Clonal coexistence inDaphnia pulex (Leydig): Another planktonic paradox. Science 207: 1363–1365.

    Google Scholar 

  • Hrbáčková-Esslová, M., 1963. The development of three species ofDaphnia in the surface water of the Slapy reservoir. Int. Revue ges. Hydrobiol. 48: 325–333.

    Google Scholar 

  • Hutchinson, G. E., 1961. The paradox of the plankton. Am. Nat. 95: 137–145.

    Article  Google Scholar 

  • Jacobs, J., 1978. Coexistence of similar zooplankton species by differential adaptation to reproduction and escape in an environment with fluctuating food and enemy densities. III. Laboratory experiments. Oecologia (Berl.) 35: 35–54.

    Article  Google Scholar 

  • Kerfoot, W. C., 1977. Competition in cladoceran communities: The cost of evolving defences against copepod predation. Ecology 58: 303–313.

    Article  Google Scholar 

  • Kerfoot, W. C. & R. A. Pastorok, 1978. Survival versus competition: evolutionary compromises and diversity in the zooplankton. Verh. int. Ver. Limnol. 20: 362–374.

    Google Scholar 

  • Lampert, W. & U. Schober, 1980. The importance of ‘threshold’ food concentrations. In W. C. Kerfoot (ed.), Evolution and Ecology of Zooplankton Communities. The University Press of New England, Hanover (N.H.); Lond.: 264–267.

    Google Scholar 

  • Levins, R. 1979. Coexistence in a variable environment. Am. Nat. 114: 765–783.

    Article  Google Scholar 

  • Loaring, J. M. & P. D. N. Hebert, 1981. Ecological differences among clones ofDaphnia pulex Leydig. Oecologia (Berl.) 51: 162–168.

    Article  Google Scholar 

  • Lynch, M., 1978. Complex interactions between natural coexploiters —Daphnia andCeriodaphnia. Ecology 59: 552–564.

    Article  Google Scholar 

  • Lynch, M., 1979. Predation, competition and zooplankton community structure: An experimental study. Limnol. Oceanogr. 24: 253–272.

    Google Scholar 

  • Lynch, M., 1980a. The evolution of cladoceran life histories. Quart. Rev. Biol. 55: 23–42.

    Article  Google Scholar 

  • Lynch, M., 1980b. Predation, enrichment, and the evolution of cladoceran life histories: A theoretical approach. In W. C. Kerfoot (ed.), Evolution and Ecology of Zooplankton Communities. The University Press of New England, Hanover (N.H.), Lond.: 367–376.

    Google Scholar 

  • Matveev, V., 1983. Estimating competition in cladocerans using data on dynamics of clutch size and population density. Int. Revue ges. Hydrobiol. 68: 785–798.

    Google Scholar 

  • Murray, B. G., Jr. & L. Gárding, 1984. On the meaning of the parameterx of Lotka's discrete equations. Oikos 42: 323–326.

    Article  Google Scholar 

  • Neill, W. E., 1974. The community matrix and interdependence of the competition coefficients. Am. Nat. 108: 399–408.

    Article  Google Scholar 

  • Neill, W. E., 1975. Experimental studies on microcrustacean competition, community composition and efficiency of resource utilization. Ecology 56: 809–826.

    Article  Google Scholar 

  • Neill, W. E., 1978. Experimental studies on factors limiting colonization byDaphnia pulex Leydig of coastal montane lakes in British Columbia. Can. J. Zool. 56: 2498–2507.

    Google Scholar 

  • Noy-Meir, I., 1981. Theoretical dynamics of competitors under predation. Oecologia (Berl.) 50: 277–284.

    Article  Google Scholar 

  • Ranta, E., 1979. Niche ofDaphnia species in rock pools. Arch. Hydrobiol. 87: 205–223.

    Google Scholar 

  • Ricklefs, R. E., 1980. Ecology. 2nd edition. Nelson, Sunbury-on-Thames, Great Britain.

    Google Scholar 

  • Romanovsky, Y. E., 1984. Individual growth rate as a measure of competitive advantages in cladoceran Crustaceans. Int. Revue. ges. Hydrobiol. 69: 613–632.

    Google Scholar 

  • Romanovsky, Y. E. & I. Y. Feniova, 1985. Competition among Cladocera: effect of different levels of food supply. Oikos 44: 243–252.

    Article  Google Scholar 

  • Roughgarden, J., 1979. Theoretical population genetics and evolutionary ecology: An introduction. MacMillan, New York.

    Google Scholar 

  • Schoener, T. W., 1974. Resource partitioning in ecological communities. Science 185: 27–39.

    Article  PubMed  Google Scholar 

  • Schoener, T. W., 1983. Field experiments on interspecific competition. Am. Nat. 122: 240–285.

    Article  Google Scholar 

  • Siegel, S., 1956. Non-parametric statistics for the behavioural sciences. McGraw-Hill, Tokyo.

    Google Scholar 

  • Smith, D. W. & S. D. Cooper, 1982. Competition among Cladocera. Ecology 63: 1004–1015.

    Article  Google Scholar 

  • Sokal, R. R. & F. J. Rohlf, 1969. Biometry. Freeman, San Francisco.

    Google Scholar 

  • Sprules, W. G., 1972. Effects of size-selective predation and food competition on high-altitude zooplankton communities. Ecology 53: 375–386.

    Article  Google Scholar 

  • Tessier, A. J., L. L. Henry, C. E. Goulden & M. W. Durand, 1983. Starvation inDaphnia: Energy reserves and reproductive allocation. Limnol. Oceanogr. 28: 667–676.

    Article  Google Scholar 

  • Threlkeld, S. T., 1976. Starvation and the size structure of zooplankton communities. Freshwat. Biol. 6: 489–496.

    Article  Google Scholar 

  • Tillmann, U. & W. Lampert, 1984. Competitive ability of differently sizedDaphnia species: An experimental test. J. Freshwat. Ecol. 2: 311–323.

    Google Scholar 

  • Wiens, J. A., 1984. On understanding a non-equilibrium world: Myth and reality in community patterns and processes. In D. J. Strong, Jr., D. Simberloff, L. G. Abele & A. B. Thistle (ed.), Ecological communities: Conceptual issues and the evidence. Princetown University Press, Princetown, New Jersey, 439–457.

    Google Scholar 

  • Zaret, T., 1980. Predation and freshwater communities. Yale University Press, New Haven.

    Google Scholar 

  • Ågren, G. I. & T. Fagerström, 1984. Limiting dissimilarity in plants: randomness prevents exclusion of species with similar competitive abilities. Oikos 43: 369–375.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bengtsson, J. Competitive dominance among Cladocera: Are single-factor explanations enough?. Hydrobiologia 145, 245–257 (1987). https://doi.org/10.1007/BF02530285

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02530285

Keywords

Navigation