Skip to main content
Log in

Genotypic characteristics of the Cladocera

  • Distribution & Genetics
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Work on the genetics of cladocerans reproducing by cyclic parthenogenesis has indicated that populations usually include a large number of genotypes, whose frequencies are in close approximation to Hardy-Weinberg equilibrium. Less diverse genotypic arrays and pronounced instability in genotype frequencies occur only in permanent populations exposed to limited ephippial recruitment. Genetic diversification among local cladoceran populations is greater than in most other organisms as a consequence of the inefficiency of passive dispersal. Genotypic characteristics of cladocerans reproducing by obligate parthenogenesis are markedly different from those of cyclic parthenogens. Local populations include few clones, but genetic distances between them are often large and accompanied by significant ecological and morphological divergence. When considered over their entire range, cladoceran taxa reproducing by obligate asexuality are the most genotypically diverse asexual organisms known. This diversity has originated from the spread of a sex-limited meiosis suppressor through species that originally reproduced by cyclic parthenogenesis. The confused state of cladoceran taxonomy is partially a consequence of the presence of such obligately asexual groups, but also results from the occurrence of hybridization and sibling species. The genome size of cladocerans is exceptionally small and is associated with a large amount of endopolyploidy. Somatic tissues in adult cladocerans show a range in nuclear DNA content from 2–2048 c. DNA quantification studies have additionally revealed the frequent occurrence of polyploid clones in obligately asexual taxa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allendorf, F. W., K. L. Knudsen & G. M. Blake, 1982. Frequencies of null alleles at enzyme loci in natural populations of Ponderosa and red pine. Genetics 100: 497–504.

    PubMed  Google Scholar 

  • Bachmann, K. & E. L. Rheinsmith, 1973. Nuclear DNA amounts in Pacific Crustacea. Chromosoma 37: 405–416.

    Google Scholar 

  • Bennett, M. D., 1971. The duration of meiosis. Proc. R. Soc. B. 178: 277–299.

    CAS  Google Scholar 

  • Bennett, M. C., 1972. Nuclear DNA content and minimum generation time in herbaceous plants. Proc. R. Soc. B. 181: 109–135.

    Article  CAS  Google Scholar 

  • Berger, E. & J. Sutherland, 1978. Allozyme variation in two natural populations ofDaphnia pulex. Heredity 41: 13–23.

    Google Scholar 

  • Brock, D. A., 1980. Genotypic succession in the cyclomorphosis ofBosmina longirostris (Cladocera). Freshwat. Biol. 10: 239–250.

    Article  Google Scholar 

  • Brooks, J. L., 1957. The Systematics of North AmericaDaphnia Mem. Conn. Acad. Arts Sci. 13: 1–180.

    Google Scholar 

  • Cavalier-Smith, T., 1978. Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA c-value paradox. J. Cell Sci. 34: 247–278.

    CAS  PubMed  Google Scholar 

  • Crease, T. J., 1981. Genetic variation in natural populations ofDaphnia. MSc thesis. University of Windsor.

  • Davison, J., 1969. Activation of ephippial eggs ofDaphnia pulex. J. Gen. Physiol. 53: 565–575.

    Article  Google Scholar 

  • Dodson, S. I., 1981. Morphological variation ofDaphnia pulex Leydig (Crustacea:Cladocera) and related species from North America. Hydrobiologia 83: 101–114.

    Article  Google Scholar 

  • Dodson, S. I., 1984. Predation ofHeterocope septentrionalis on two species ofDaphnia: morphological defenses and their cost. Ecology 65: 1249–1257.

    Article  Google Scholar 

  • Dumont, H. J., 1980. Zooplankton and the science of biogeography: the example of Africa. In: W. C. Kerfoot (ed.), Evolution and Ecology of Zooplankton Communities. The University Press of New England, Hanover (N.H.); Lond.: 685–696.

    Google Scholar 

  • Dumont, H. J., 1984.Daphnia ambigua Scourfield, 1947 (Cladocera:Daphniidae) on the European continent. Biologisch Jaarb. 42: 112–116.

    Google Scholar 

  • Einsle, U., 1966. Einige Beobachtungen und Hypothesen zur Taxonomie der GattungDaphnia. Schr. Reihe. V.G. Bodensee. 84: 1–17.

    Google Scholar 

  • Emery, C. J., 1984. The ecological impact of near ultraviolet radiation onDaphnia pulex. MSc. thesis. University of Windsor.

  • Frey, D. G., 1982. Questions concerning cosmopolitanism in Cladocera. Arch. Hydrobiol. 93: 484–502.

    Google Scholar 

  • Grant, J. W. G. & I. A. E. Bayly, 1981. Predator induction of crests in morphs of theDaphnia carinata King complex. Limnol. Oceanogr. 26: 201–218.

    Google Scholar 

  • Hann, B. J. & P. D. N. Hebert, 1982. The genetics ofSimocephalus: a reevaluation. Genetics 102: 101–107.

    PubMed  Google Scholar 

  • Hebert, P. D. N., 1974a. Enzyme variability in natural populations ofDaphnia magna. I. Population structure in East Anglia. Evolution 28: 546–556.

    Article  Google Scholar 

  • Hebert, P. D. N., 1974b. Enzyme variability in natural populations ofDaphnia magna. II. Genotypic frequencies in permanent populations. Genetics 77: 323–334.

    CAS  PubMed  Google Scholar 

  • Hebert, P. D. N., 1974c. Enzyme variability in natural populations ofDaphnia magna. III. Genotypic frequencies in intermittent populations. Genetics 77: 335–341.

    CAS  PubMed  Google Scholar 

  • Hebert, P. D. N., 1977. A revision of the taxonomy of the genusDaphnia in southeastern Australia. Aust. J. Zool. 25: 371–398.

    Article  Google Scholar 

  • Hebert, P. D. N., 1978. The population biology ofDaphnia. Biol. Rev. 53: 387–426.

    Google Scholar 

  • Hebert, P. D. N., 1981. Obligate asexuality inDaphnia. Am. Nat. 117: 784–789.

    Article  Google Scholar 

  • Hebert, P. D. N., 1983. Clonal diversity in cladoceran populations. In: C. E. King & P. S. Dawson (eds), Population Biology: Retrospect and Prospect. Columbia University Press, New York: 37–60.

    Google Scholar 

  • Hebert, P. D. N., 1984. Demographic implications of genotypic diversity in zooplankton populations. In: K. Wohrmann & V. Loeschke (eds), Population Biology and Evolution. Springer Verlag: 195–207.

  • Hebert, P. D. N., 1985. Interspecific hybridization and cyclic parthenogenesis. Evolution 39: 216–220.

    Article  Google Scholar 

  • Hebert, P. D. N. & T. J. Crease, 1980. Clonal coexistence inDaphnia pulex Leydig: another planktonic paradox. Science 207: 1373–1375.

    Google Scholar 

  • Hebert, P. D. N. & T. J. Crease, 1983. Clonal diversity in populations ofDaphnia pulex reproducing by obligate parthenogenesis. Heredity 51: 353–369.

    Google Scholar 

  • Hebert, P. D. N. & P. M. Grewe, 1985.Chaoborus induced shifts in the morphology ofDaphnia ambigua. Limol. Oceanogr. 30: 1291–1297.

    Google Scholar 

  • Hebert, P. D. N. & J. M. Loaring, 1980. Selective predation and the species composition of arctic ponds. Can. J. Zool. 58: 422–426.

    Article  Google Scholar 

  • Hebert, P. D. N. & J. M. Loaring, 1986. Systematicvs of theDaphnia pulex complex: morphological variation in an agamic complex and description of a species new to North America. Biochem. Syst. and Ecology 14: 333–340.

    Article  Google Scholar 

  • Hebert, P. D. N. & D. B. McWalter, 1983. Cuticular pigmentation in arcticDaphnia: adaptive diversification of asexual lineages? Am. Nat. 122: 286–291.

    Article  Google Scholar 

  • Hebert, P. D. N. & C. Moran, 1980. Enzyme variability in natural populations ofDaphnia carinata. Heredity 45: 313–321.

    CAS  PubMed  Google Scholar 

  • Innes, D. J. & P. D. N. Hebert, 1986. The origin of obligate parthenogenesis inDaphnia pulex. In review.

  • Innes, D. J., S. S. Schwartz & P. D. N. Hebert, 1986. Variation in mode of reproduction among populations in theDaphnia pulex group. Heredity: in press.

  • Jacobs, J., 1982. Short-term and small-scale genetic differentiation in two partially parthenogenetic pelagic species ofDaphnia. A preliminary report. In: S. D. Jayakar & L. Zonta (eds), Evolution and Genetics of Populations. University of Pavia.

  • Jager, G., 1934. Über den Fettkorper vonDaphnia magna. Z. Zellforsch. mikrosk. Anat. 22: 89–131.

    Article  CAS  Google Scholar 

  • Kikuchi, S., 1983. The fine structure of the gill epithelium of a fresh-water flea,Daphnia magna (Crustacea:Phyllopoda) and changes associated with acclimation to various salinities. I. Normal fine structure. Cell Tissue Res. 229: 253–268.

    Article  CAS  PubMed  Google Scholar 

  • Korpelainen, H., 1984. Genic differentiation ofDaphnia magna populations. Hereditas 101: 209–216.

    Google Scholar 

  • Kreuger, D. A. & S. I. Dodson, 1981. Embryological induction and predation ecology inDaphnia pulex. Limnol. Oceanogr. 26: 219–223.

    Google Scholar 

  • Lewontin, R. C., 1965. Selection for colonizing ability. In: H. G. Baker & B. L. Stebbins (eds), In The Genetics of Colonizing Species. Academic Press, New York.

    Google Scholar 

  • Lieder, U., 1956. Introgressive Hybridization als Evolutionsfaktor bei den GattungenBosmina undDaphnia (Crustacea, Cladocera). Naturwissenschaften 43: 207.

    Article  Google Scholar 

  • Lieder, U., 1983. Introgression as a factor in the evolution of polytypical plankton Cladocera. Int. Revue ges. Hydrobiol. 68: 269–284.

    Google Scholar 

  • Loaring, J. M., 1982. The ecological genetics ofDaphnia species. MSc. thesis. University of Windsor.

  • Loaring, J. M. & P. D. N. Hebert, 1981. Ecological differences among clones ofDaphnia pulex Leydig. Oecologia 51: 162–168.

    Article  Google Scholar 

  • Luecke, C. & W. J. O'Brien, 1983. Photoprotective pigments in a pond morph ofDaphnia middendorffiana. Arctic 36: 365–368.

    Google Scholar 

  • Lynch, M., 1983. Ecological genetics ofDaphnia pulex. Evolution 37: 358–374.

    Article  Google Scholar 

  • Lynch, M., 1984. The genetic structure of a cyclic parthenogen. Evolution 38: 186–203.

    Article  Google Scholar 

  • Manning, B. J., W. C. Kerfoot & E. M. Berger, 1978. Phenotypes and genotypes in cladoceran populations. Evolution 32: 365–374.

    Article  Google Scholar 

  • Mort, M. A. & H. G. Wolf, 1985. Enzyme variability in large lakeDaphnia populations. Heredity 55: 27–36.

    Google Scholar 

  • Mort, M. A. & H. G. Wolf, 1986. The genetic structure of large lakeDaphnia populations. Evolution 40: 756–767.

    Article  Google Scholar 

  • Rheinsmith, E. L., R. Hinegardner & K. Bachmann, 1974. Nuclear DNA amounts in Crustacea. Comp. Biochem. Physiol. 48B: 343–348.

    Google Scholar 

  • Schwartz, S. S. & P. D. N. Hebert, 1986a. Methods for the activation of the resting eggs ofDaphnia. Freshwat. Biol.: in press.

  • Schwartz, S. S. & P. D. N. Hebert, 1986b. Reproductive biology ofDaphniopsis ephemeralis: adaptations to a transient environment. Hydrobiologia: 145: 195–200.

    Google Scholar 

  • Schwartz, S. S., D. J. Innes & P. D. N. Hebert, 1985. Morphological separation ofDaphnia pulex andD. obtusa in North America. Limnol. Oceanogr. 30: 189–197.

    Article  Google Scholar 

  • Smith, M. Y. & D. Fraser, 1976. Polymorphism in a cyclic parthenogenetic species:Simocephalus serrulatus Genetics 84: 631–637.

    CAS  PubMed  Google Scholar 

  • Sterba, G., 1956. Zytologische Untersuchungen an Grosskernigen Fettzellen vonD. pulex unter besonderer Berücksichtigung des Mitochondrien-Formwechsels. Z. Zellforsch. 44: 456–487.

    CAS  PubMed  Google Scholar 

  • Sterba, G., 1957. Die Riesenzellen der Daphnien-Oberlippe. Z. Zellforsch. 47: 198–213.

    Article  CAS  PubMed  Google Scholar 

  • Trentini, M., 1980. Chromosome numbers of nine species of Daphniidae (Crustacea, Cladocera). Genetica 54: 221–223.

    Article  Google Scholar 

  • Voelker, R. A., C. H. Langley, A. J. Leigh Brown, S. Ohnishi, B. Dickson, E. Montgomery & S. C. Smith, 1980. Enzyme null alleles in natural populations ofDrosophila melanogaster: Frequencies in a North Carolina population. Proc. Natn. Acad. Sci. U.S.A. 77: 1091–1095.

    Article  CAS  Google Scholar 

  • Weider, L. J., 1985. Spatial and temporal genetic heterogeneity in a naturalDaphnia population. J. Plankton Res. 7: 101–123.

    Google Scholar 

  • Weider, L. J. & P. D. N. Hebert, 1986. Ecological and physiological differentiation among low arctic clones ofDaphnia pulex. Ecology: in press.

  • Weider, L. J. & W. Lampert, 1985. Differential response ofDaphnia genotypes to oxygen stress: respiration rates, haemoglobin content and low oxygen tolerance. Oecologia (Berl.) 65: 487–491.

    Article  Google Scholar 

  • Wolf, H. G. & M. A. Mort, 1986. Interspecific hybridization underlies phenotypic variability inDaphnia populations: Oecologia 68: 507–511.

    Article  Google Scholar 

  • Wright, S., 1978. Evolution and the Genetics of Populations. Vol. 4. Variability Within and Among Natural Populations. Univ. Chicago Press, Chicago. 580 pp.

    Google Scholar 

  • Young, J. P. W., 1979a. Enzyme polymorphism and cyclic parthenogenesis inDaphnia magna I. Selection and clonal diversity. Genetics 92: 953–970.

    CAS  PubMed  Google Scholar 

  • Young, J. P. W., 1979b. Enzyme polymorphism and cyclical parthenogenesis inDaphnia magna II. Evidence of heterosis. Genetics 92: 971–982.

    CAS  PubMed  Google Scholar 

  • Zouros, E., S. H. Singh & H. E. Miles, 1980. Growth rate in oysters: an overdominant phenotype and its possible explanations. Evolution 34: 856–867.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hebert, P.D.N. Genotypic characteristics of the Cladocera. Hydrobiologia 145, 183–193 (1987). https://doi.org/10.1007/BF02530279

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02530279

Keywords

Navigation