Archives of Dermatological Research

, Volume 288, Issue 5–6, pp 239–244 | Cite as

Immunolocalizations of human gelatinase (type IV collagenase, MMP-9) and TIMP (tissue inhibitor of metalloproteinases) in normal epidermis and some epidermal tumors

  • T. Kobayashi
  • N. Onoda
  • T. Takagi
  • H. Hori
  • S. Hattori
  • Y. Nagai
  • S. Tajima
  • T. Nishikawa
Original Paper


The matrix metalloproteinases (MMPs) MMP-2 and MMP-9 (gelatinases) have been suggested as serving an important role in cleaving the basement membrane structure. Tissue inhibitors of metalloproteinases TIMPs (particularly TIMP-1) are known to inhibit MMPs. Based on this background, we raised monoclonal antibodies against human gelatinase (MMP-9) and human recombinant TIMP (TIMP-1), and immunostained these two components in skin from patients with squamous cell carcinoma (SCC), Bowen's disease (BD) and keratoacanthoma (KA). MMP-9 showed positive staining mainly in the granular layer of normal epidermis. In some cases of SCC and BD, MMP-9 showed positive staining in the dysplastic lesions even in the basal layer. TIMP showed a thorough positivity in normal epidermis. Unstained regions with this antibody were observed in SCC and BD. These results suggest that an altered staining pattern for MMP-9 and TIMP may be closely related to the malignant transformation of SCC and BD.

Key words

Gelatinase Type IV collagenase MMP-9 TIMP Epidermis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams JC, Watt FM (1990) Changes in keratinocyte adhesion during terminal differentiation: reduction in fibronectin binding precedes α5β1 integrin loss from the cell surface, Cell 63:425–435PubMedCrossRefGoogle Scholar
  2. 2.
    Bertaux B, Hornebeck W, Eisen AZ, Dubertret L (1991) Growth stimulation of human keratinocytes by tissue inhibitor of metalloproteinases. J Invest Dermatol 97:679–685PubMedCrossRefGoogle Scholar
  3. 3.
    Carter WG, Ryan MC, Gahr PJ (1991) Epiligrin, a new cell adhesion ligand for integrin α3β1 in epithelial basement membranes Cell 65:599–610PubMedCrossRefGoogle Scholar
  4. 4.
    Collier JE, Wilhelm SM, Eisen AZ, Marmer BL, Grant GA, Seltzer JL, Kronberger A, He C, Bauer EA, Goldberg GI (1988) H-ras oncogene-transformed human bronchial epithelial cells (TBE-1) secrete a single metalloprotease capable of degrading basement membrane collagen. J Biol Chem 263:6579–6587PubMedGoogle Scholar
  5. 5.
    Goldberg GI, Strongin A, Collier IE, Genrich LT, Marmer BL (1992) Interaction of 92-kDa type IV collagenase with the tissue inhibitor of metalloproteinases prevents dimerization, complex formation with interstitial collagenase, and activation of the proenzyme with stromelysin. J Biol Chem 267:4583–4591PubMedGoogle Scholar
  6. 6.
    Green H (1977) Terminal differentiation of cultured human epidermal cells. Cell 11:405–416PubMedCrossRefGoogle Scholar
  7. 7.
    Karelina TV, Hruza GJ, Goldberg GI, Eisen AZ (1993) Localization of 92-kDa type IV collagenase in human skin tumors: comparison with normal human fetal and adult skin. J Invest Dermatol 100:159–165PubMedCrossRefGoogle Scholar
  8. 8.
    Kjeldsen L, Bjerrum OW, Hovgaard D, Johnsen AH, Sehested M, Borregaard N (1992) Human neutrophil gelatinase: A marker for circulating blood neutropils. Purification and quantitation by enzyme linked immunosorbent assay. Eur J Haematol 49: 180–191PubMedCrossRefGoogle Scholar
  9. 9.
    Kleiner DE Jr, Stetler-Stevenson WG (1993) Structural biochemistry and activation of matrix metalloproteinases. Curr Opin Cell Biol 5:891–897PubMedCrossRefGoogle Scholar
  10. 10.
    Kobayashi T, Hori H, Kanamori T, Hattori S, Takagi T, Watanabe H, Nishikawa T, Nagai Y (1993) Monoclonal antibodies to human polymorphonuclear leukocyte gelatinase (type IV collagenase) are cross-reactive with fibroblast gelatinase. Biochem Biophys Res Commun 193:490–496PubMedCrossRefGoogle Scholar
  11. 11.
    Kubota S, Mitsudomi T, Yamada Y (1991) Invasive human fibrosarcoma DNA mediated induction of a 92kDa gelatinase/type IV collagenase leads to an invasive, phenotype. Biochem Biophys Res Commun 181:1539–1547PubMedCrossRefGoogle Scholar
  12. 12.
    Levy AT, Cioce V, Sobel ME, Garbisa S, Grigioni WF, Liotta LA, Stetler-Stevenson WG (1991) Increased expression of the Mr 72,000 type IV collagenase in human colonic adenocarcinoma. Cancer Res 51:439–444PubMedGoogle Scholar
  13. 13.
    Matrisian LM (1990) Metalloproteinases and their inhibitors in matrix remodeling. Trends Genet 6:121–125PubMedCrossRefGoogle Scholar
  14. 14.
    Mauch C, Krieg T, Bauer EA (1994) Role of the extracellular matrix in the degradation of connective tissue. Arch Dermatol Res 287:107–114PubMedCrossRefGoogle Scholar
  15. 15.
    McCall CA, Cohen JJ (1991) Programmed cell death in terminally differentiating keratinocytes: role of endogenous endonuclease. J Invest Dermatol 97:111–114PubMedCrossRefGoogle Scholar
  16. 16.
    Miyazaki K, Hasegawa M, Funahashi K, Umeda M (1993) A metalloproteinase inhibitor domain in Alzheimer amyloid protein precursor. Nature 362:839–841PubMedCrossRefGoogle Scholar
  17. 17.
    Monteagudo C, Merino MJ, San-Juan J, Liotta LA, Setler-Stevenson WG (1990) Immunohistochemical distribution of type IV collagenase in normal, benign, and malignant breast tissue. Am J Pathol 136:585–592PubMedGoogle Scholar
  18. 18.
    Oishi M, Maeda K, Sugiyama S (1994) Distribution of apoptosis-mediating Fas antigen in human skin and effects of anti-Fas monoclonal antibody on human epidermal keratinocyte and squamous cell carcinoma cell lines. Arch Dermatol Res 286: 396–407PubMedCrossRefGoogle Scholar
  19. 19.
    Okada Y, Gonoji Y, Nakanishi I, Nagase H, Hayakawa T (1990) Immunohistochemical demonstration of collagenase and tissue inhibitor of metalloproteinases (TIMP) in synovial lining cells of rheumatoid synovium. Virchows Archiv B Cell Pathol 59:305–312CrossRefGoogle Scholar
  20. 20.
    Okada Y, Gonoji Y, Naka K, Tomita K, Nakanishi I, Iwata K, Yamashita K, Hayakawa T (1992) Matrix metalloproteinase 9 (92-kDa gelatinase/type IV collagenase) from HT 1080 human fibrosarcoma cells. Purification and activation of the precursor and enzymic properties. J Biol Chem 267:21712–21719PubMedGoogle Scholar
  21. 21.
    Pyke C, Ralfkiaer E, Huhtala P, Hurskainen T, Danø K, Tryggvason K (1992) Localization of messenger RNA for Mr 72,000 and 92,000 type IV collagenases in human skin cancers by in situ hybridization. Cancer Res 52:1336–1341PubMedGoogle Scholar
  22. 22.
    Sarret Y, Woodley DT, Goldberg GS, Kronberger A, Wynn KC (1992) Constitutive synthesis of a 92 kDa keratinocyte-derived type IV collagenase is enhanced by type I collagen and decreased by type IV collagen matrices. J Invest Dermatol 99: 836–841PubMedCrossRefGoogle Scholar
  23. 23.
    Sato H, Kida Y, Mai M, Endo Y, Sasaki T, Tanaka J, Seiki M (1992) Expression of genes encoding type IV collagen-degrading metalloproteinases and tissue inhibitors of metalloproteinases in various human tumor cells. Oncogene 7:77–83PubMedGoogle Scholar
  24. 24.
    Sayama K, Yonehara S, Watanabe Y, Miki Y (1994) Expression of Fas antigen on keratinocytes in vivo and induction of apoptosis in cultured keratinocytes. J Invest Dermatol 103: 330–334PubMedCrossRefGoogle Scholar
  25. 25.
    Schroeder WT, Thacher SM, Stewart-Geletka S, Annarella M, Chema D, Siciliano MJ, Davies PJA, Tang HY, Sowa BA, Duvic M (1992) Type I keratinocyte transglutaminase: expression in human skin and psoriasis. J Invest Dermatol 99:27–34PubMedCrossRefGoogle Scholar
  26. 26.
    Spandau DF (1994) Distinct conformations of p53 are observed at different stages of keratinocyte differentiation. Oncogene 9: 1861–1868PubMedGoogle Scholar
  27. 27.
    St»hle-Bäckdahl M, Parks WC (1993) 92-kd gelatinase is actively expressed by eosinophils and stored by neutrophils in squamous cell carcinoma. Am J Pathol 142:995–1000Google Scholar
  28. 28.
    Tamada Y, Takama H, Kitamura T, Yokochi K, Nitta Y, Ikeya T, Matsumoto Y (1994) Identification of programmed cell death in normal human skin tissues by using specific labelling of fragmented DNA. Br J Dermatol 131:521–524PubMedCrossRefGoogle Scholar
  29. 29.
    Tokimitsu I, Ohyama K, Tajima S, Nishikawa T (1991) Secretion of a unique collagen by spontaneously transformed murine keratinocytes (PAM cells) in vitro. J Invest Dermatol 96:267–272PubMedCrossRefGoogle Scholar
  30. 30.
    Uría JA, Ferrando AA, Velasco G, Freije JM, López-Otín C (1994) Structure and expression in breast tumors of human TIMP-3, a new member of the metalloproteinase inhibitor family. Cancer Res 54:2091–2094PubMedGoogle Scholar
  31. 31.
    Wilhelm SM, Collier IE, Marmer BL, Eisen AZ, Grant GA, Goldberg GI (1989) SV40-transformed human lung fibroblasts secrete a 92-kDa type IV collagenase which is identical to that secreted by normal human macrophages. J Biol Chem 264: 17213–17221PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • T. Kobayashi
    • 1
  • N. Onoda
    • 2
  • T. Takagi
    • 3
  • H. Hori
    • 3
  • S. Hattori
    • 3
  • Y. Nagai
    • 3
  • S. Tajima
    • 1
  • T. Nishikawa
    • 1
  1. 1.Department of DermatologyKeio University School of MedicineTokyoJapan
  2. 2.Department of PathologyTokyo Daini National HospitalTokyoJapan
  3. 3.Department of Tissue Physiology, Medical Research InstituteTokyo Medical and Dental UniversityTokyoJapan

Personalised recommendations