Bennett AS, Quackenbush FW (1969) Synthesis of unsaturated fatty acids byPenicillium chrysogenum. Archiv Biochem Biophys 130:567–572
Article
CAS
Google Scholar
Brennan PJ, Griffin PFS, Lösel DM, Tyrrell D (1974) The lipids of fungi. Prog Chem Fats Other Lipids 14:51–89
Google Scholar
Brown CM, Rose AH (1969) Fatty acid composition ofCandida utilis as affected by growth temperature and dissolved-oxygen tension. J Bacteriol 99:371–378
PubMed
CAS
Google Scholar
Brown DE, Hasan M, Lepe-Casillar M, Thornton AJ (1990) Effect of temperature and pH on lipid accumulation byTrichoderma reesei. Appl Microbiol Biotechnol 34:335–339
Article
CAS
Google Scholar
Chavant L, Wolf C, Fonvieille JL, Dargent R (1981) Deviation from the usual relationships between the temperature, the growth rate, the fatty acid composition and the lipid microviscosity of four different fungi (Mucor mucedo, Aspergillus ochraceus, Scopulariopsis brevicaulis, Achlya bisexualis). Biochem Biophys Res Commun 101:912–920
PubMed
Article
CAS
Google Scholar
Chopra A, Khuller GK (1984) Lipid metabolism in fungi. Crit Rev Microbiol 11:209–271
PubMed
CAS
Google Scholar
Coté GG, Brody S (1987) Circadian rhythms inNeurospora crassa: membrane composition of a mutant defective in temperature compensation. Biochim Biophys Acta 898:23–36
PubMed
Article
Google Scholar
Crisan EV (1973) Current concepts of thermophilism and the thermophilic fungi. Mycologia 65:1171–1198
PubMed
CAS
Google Scholar
Ferrante G, Kates M (1983) Pathways for desaturation of oleoyl chains inCandida lipolytica. Can J Biochem Cell Biol 61:1191–1196
PubMed
CAS
Article
Google Scholar
Kamisaka Y, Yokochi T, Nakahara T, Suzuki O (1990) Incorporation of linoleic acid and its conversion to linolenic acid in fungi. Lipids 25:54–60
Article
CAS
Google Scholar
Kates M, Paradis M (1973) Phospholipid desaturation inCandida lipolytica as a function of temperature and growth. Can J Biochem 51:184–197
PubMed
CAS
Google Scholar
Lösel DM (1988) Fungal lipids. In: Ratledge C, Wilkinson SG (eds) Microbial lipids. Academic Press, New York London, pp 699–806
Google Scholar
Martin CE, Johnston AM (1983) Changes in fatty acid distribution and thermotropic properties of phospholipids following phosphatidylcholine depletion in a choline-requiring mutant ofNeurospora crassa. Biochim Biophys Acta 730:10–16
PubMed
Article
CAS
Google Scholar
Mumma RO, Rergus CL, Sekura RD (1970) The lipids of thermophilic fungi: lipid composition comparisons between thermophilic and mesophilic fungi. Lipids 5:100–103
PubMed
Article
CAS
Google Scholar
Okayasu T, Nagao M, Ishibashi T, Imai Y (1981) Purification and partial characterization of linoleyl-CoA desaturase from rat liver microsomes. Arch Biochem Biophys 206:21–28
PubMed
Article
CAS
Google Scholar
Radwan SS, Soliman AH (1988) Arachidonic acid from fungi utilizing fatty acids with shorter chains as sole sources of carbon and energy. J Gen Microbiol 134:387–393
CAS
Google Scholar
Richards RL, Quackenbush FW (1974) Alternate pathways of linolenic acid biosynthesis in growing cultures ofPenicillium chrysogenum. Arch Biochem Biophys 165:780–786
PubMed
Article
CAS
Google Scholar
Sumner JL, Morgan ED, Evans HC (1969) The effect of growth temperature on the fatty acid composition of fungi in the order Mucorales. Can J Microbiol 15:515–520
PubMed
CAS
Google Scholar
Suutari M, Laakso S (1994) Microbial fatty acids and thermal adaptation. Crit Rev Microbiol 20:285–328
PubMed
CAS
Google Scholar
Suutari M, Liukkonen K, Laakso S (1990) Temperature adaptation in yeasts: the role of fatty acids. J Gen Microbiol 136:1469–1474
PubMed
CAS
Google Scholar
Suutari M, Priha P, Laakso S (1993) Temperature shifts in regulation of lipids accumulated byLipomyces starkeyi. J Am Oil Chem Soc 70:891–894
CAS
Google Scholar
Vokt JP, Brody S (1985) The kinetics of changes in the fatty acid composition ofNeurospora crassa lipids after a temperature increase. Biochim Biophys Acta 835:176–182
PubMed
CAS
Google Scholar
Wilson AC, Miller RW (1978) Growth temperature-dependent stearoyl coenzyme A desaturase activity ofFusarium oxysporum microsomes. Can J Biochem 56:1109–1114
PubMed
CAS
Article
Google Scholar