Archives of Microbiology

, Volume 164, Issue 6, pp 414–419 | Cite as

The α-d-mannan core of a complex cell-wall heteroglycan ofTrichoderma reesei is responsible for β-glucosidase activation

  • Johannes Rath
  • Robert Messner
  • Paul Kosma
  • Friedrich Altmann
  • Leopold März
  • Christian P. Kubicek
Original Paper


A heteroglycan responsible for the binding of the enzyme β-1,4-d-glucosidase (EC to fungal cell walls was isolated from cell walls of the filamentous fungusTrichoderma reesei. The heteroglycan, composed of mannose, galactose, glucose, and glucuronic acid, also activated β-1,4-d-glucosidase, β-1,4-d-xylosidase andN-acetyl-β-1,4-d-glucosaminidase activity in vitro. The structural backbone of this heteroglycan was prepared by acid hydrolysis and gel filtration. The molecular structure of the core of the heteroglycan was determined by NMR studies as a linear α-1,6-d-mannan. The mannan core obtained by acid degradation stimulated the β-glucosidase activity by 90%. Several glycosidases fromAspergillus niger were also activated by theT. reesei heteroglycan. The β-glucosidase ofTrichoderma was activated by mannan fromSaccharomyces cerevisiae to a comparable extent.

Key words

Heteroglycan Cell walls 1,6-α-d-Mannan Trichoderma Aspergillus β-Glucosidase Glycosidases 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agarios T (1984) Plant pathology. Academic Press, New York, LondonGoogle Scholar
  2. Bock K, Lundt I, Pedersen C (1973) Assignment of anomeric structure to carbohydrates through geminal13C−H coupling constants. Tetrahedron Lett 13:1037–1040CrossRefGoogle Scholar
  3. Christensen BE (1989) The role of extracellular polysaccharides in biofilms. J Biotechnol 10:181–202CrossRefGoogle Scholar
  4. Costerton JW, Irvin RT, Cheng KJ (1981) The bacterial glycocalyx in nature and disease. Annu Rev Microbiol 35:229–324CrossRefGoogle Scholar
  5. Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464PubMedCrossRefGoogle Scholar
  6. Doares S, Albersheim MP, Darvill AG (1991) An improved method for the preparation of standards for glycosyl-linkage analysis of complex carbohydrates. Carbohydr Res 210:311–317CrossRefGoogle Scholar
  7. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356CrossRefGoogle Scholar
  8. Geyer R, Geyer H, Kühnhardt S, Mink W, Stirm S (1983) Methylation analysis of complex carbohydrates in small amounts: capillary gas chromatography-mass fragmentography of methylalditol acetates obtained fromN-glycosidically linked glycoprotein oligosaccharides. Anal Biochem 133:197–207PubMedCrossRefGoogle Scholar
  9. Gorin PAJ, Haskins RH, Tavassos LR, Mendoca-Previato L (1977) Further studies on the rhamnomannan and acid rhamnomannan ofSporothrix schenkii andCeratocystis stenoceras. Carbohydr Res 55:21–33PubMedCrossRefGoogle Scholar
  10. Hara S, Okabe H, Mihashi K (1987) Gas-liquid chromatographic separation of aldose enantiomers as trimethylsilyl ethers of methyl 2-(polyhydroxyalkyl)-thiazolidine-4(R)-carboxylates. Chem Pharm Bull 35:501–506Google Scholar
  11. Hoch HC (1978) Mycoparasitic relationships IV.Stephanoma phaeospora parasitic on a species ofFusarium. Mycologia 70:370–379Google Scholar
  12. Kogan G, Pavliak V, Sandula J, Masler L (1988) Novel structure of the cellular mannan of the pathogenic yeastCandida krusei. Carbohydr Res 184:171–182PubMedCrossRefGoogle Scholar
  13. Kolar H, Mischak H, Kammel W, Kubicek CP (1985) Carboxymethylcellulase and β-glucosidase secretion by protoplasts ofTrichoderma reesei. J Gen Microbiol 131:1339–1347Google Scholar
  14. Kubicek CP (1981) Release of carboxymethyl-cellulase and β-glucosidase from cell walls ofTrichoderma reesei. Eur J Appl Microbiol Biotechnol 13:226–231CrossRefGoogle Scholar
  15. Lappin-Scott HM, Costerton JW, Marrie TJ (1992) Biofilms and biofouling. In: Lederberg (ed) Encyclopedia of microbiology, vol 1. Academic Press, London, pp 339–349Google Scholar
  16. Lubbers GW, Gieskes WWC, del Castilho P Salomons W, Bril J (1990) Manganese accumulation in the high pH microenvironment ofPhaeocystis sp. (Haptophyceae) colonies from the North Sea. Mar Ecol Prog Ser 59:285–293Google Scholar
  17. Mandels M, Andreotti RE (1978) Problems and challenges in the cellulose to cellulase fermentation. Proc Biochem 13:6–13Google Scholar
  18. Messner R, Kubicek CP (1990) Evidence of a single, specific β-glucosidase in cell walls fromTrichoderma reesei QM 9414. Enzymol Microbiol Technol 12:685–690CrossRefGoogle Scholar
  19. Messner R, Hagspiel K, Kubicek CP (1990) Isolation of a β-glucosidase binding and activating polysaccharide from cell walls ofTrichoderma reesei. Arch Microbiol 154:150–155CrossRefGoogle Scholar
  20. Ogawa T, Sasajima K (1981)1H and13C-NMR-study of synthetic methyl D-manno-oligosaccharides. Carbohydr Res 97:205–227CrossRefGoogle Scholar
  21. Parra E, Jimenz-Barbero J, Bernabe E, Leal JA, Prieto A, Gomez-Miranda B (1994) Structural studies of fungal cell-wall polysaccharides from two strains ofTalaromyces flavus. Carbohydr Res 251:315–325PubMedCrossRefGoogle Scholar
  22. Paz Parente J, Cardon P, Leroy Y, Montreuil J, Fournet B (1985) A convenient method for methylation of glycoprotein glycans in small amounts by using lithium methylsulfinyl carbanion. Carbohydr Res 141:41–47CrossRefGoogle Scholar
  23. Pistole TG (1981) Interaction of bacteria and fungi with lectin-like substances. Annu Rev Microbiol 35:85–112PubMedCrossRefGoogle Scholar
  24. Plude JL, Parker DL, Schommer OJ, Timmerman RJ, Hagstrom SA, Joers JM, Hnasko R (1991) Chemical characterization of polysaccharide from the slime layer of theCyanobacterium microcystis flos-aquae C3–40. Appl Environ Microbiol 57:1696–1700PubMedGoogle Scholar
  25. Rath J, Herndl GJ (1994) Characteristics and diversity of β-D-glucosidase (E.C. Activity in marine snow. Appl Environ Microbiol 60:807–813PubMedGoogle Scholar
  26. Rogers HJ, Perkins HR, Ward JB (1980) Microbial cell walls and membranes. Chapman and Hall, LondonGoogle Scholar
  27. Sutherland IW, Tait MI (1992) Biopolymers. In: Lederberg J (ed) Encyclopedia of microbiology, vol 1. Academic Press, New York London, pp 339–349Google Scholar
  28. Wrangstadh M, Szewzyk U, Östling J, Kjelleberg S (1990) Starvation-specific formation of a peripheral exopolysaccharide by a marinePseudomonas sp., strain S9. Appl Environ Microbiol 56:2065–2072PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Johannes Rath
    • 1
  • Robert Messner
    • 2
  • Paul Kosma
    • 3
  • Friedrich Altmann
    • 3
  • Leopold März
    • 3
  • Christian P. Kubicek
    • 4
  1. 1.Zentrallabor für Molekularbiologie, Institut für ZoologieUniversität WienWienAustria
  2. 2.Institut für Angewandte MikrobiologieUniversität für BodenkulturWienAustria
  3. 3.Institut für ChemieUniversität für BodenkulturWienAustria
  4. 4.Abteilung für Mikrobielle Biochemie, Institut für Biochemische Technologie und MikrobiologieTU WienWienAustria

Personalised recommendations