Advertisement

Ukrainian Mathematical Journal

, Volume 52, Issue 2, pp 267–284 | Cite as

On asymptotically optimal weight quadrature formulas on classes of differentiable functions

  • A. A. Ligun
  • A. A. Shumeiko
Article
  • 16 Downloads

Abstract

We investigate the problem of asymptotically optimal quadrature formulas with continuous weight function on classes of differentiable functions.

Keywords

Differentiable Function Quadrature Formula Optimal Partition Additional Node Uniform Partition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. P. Komeichuk, Extremal Problems in Approximation Theory [in Russian], Nauka. Moscow (1976).Google Scholar
  2. 2.
    S. M. Nikol’skii, Quadrature Formulas [in Russian] Nauka, Moscow 1979.Google Scholar
  3. 3.
    N. P. Komeichuk and A. A. Ligun, “On an estimate of the error of spline interpolation in the integral metric,” Ukr. Mat. Zh., 33, No. 5, 391–394 (1981).Google Scholar
  4. 4.
    A. A. Ligun, “On deviation of interpolating splines on classes of differentiable functions,” in: Investigation of Contemporary Problems of Summation and Approximation of Functions and Their Applications [in Russian], Dnepropetrovsk University, Dnepropetrovsk (1985), pp. 25–32.Google Scholar
  5. 5.
    Yu. N. Subbotin and N. I. Chernykh, “On the order of the best spline approximations of certain classes of functions,” Mat. Zametki, 7, No. 1, 31–12 (1970).MATHMathSciNetGoogle Scholar
  6. 6.
    A. A. Ligun and A. A. Shumeiko, “Optimal choice of nodes in approximating functions by splines,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 6, 18–22 (1984).Google Scholar
  7. 7.
    A. A. Ligun and A. A. Shumeiko, “On the choice of nodes for the approximation of functions by splines of the best approximation,” in: Investigation of Contemporary Problems of Summation and Approximation of Functions and Their Applications [in Russian], Dnepropetrovsk University, Dnepropetrovsk (1985), pp. 32–39.Google Scholar
  8. 8.
    D. D. Pence, “Further asymptotic properties of best approximation by splines,” J. Approxim. Theory, 47, 1–17 (1987).CrossRefMathSciNetGoogle Scholar
  9. 9.
    A. A. Ligun and A. A. Shumeiko, “On the optimal choice of nodes for the approximation of functions by interpolating splines,” Zh. Vychisl. Mat. Mat. Fiz., 24, No. 9, 1283–1293 (1984).MathSciNetGoogle Scholar
  10. 10.
    A. A. Shumeiko, “On the choice of nodes for interpolating parabolic splines,” Izv. Vyssh. Uchebn. Zaved., Ser. Mat., No. 4, 67–71 (1990).Google Scholar
  11. 11.
    B. D. Bojanov, “Uniqueness of the optimal nodes of a quadrature formula,” Math. Comp., 36, No. 154, 532–546 (1981).CrossRefMathSciNetGoogle Scholar
  12. 12.
    V. P. Motomyi, A. A. Ligun, and V. G. Doronin, Optimal Reconstruction of Functions and Functionals [in Russian] Dnepropetrovsk University, Dnepropetrovsk 1994.Google Scholar
  13. 13.
    V. P. Motornyi, “Investigations of Dnepropetrovsk mathematicians related to the optimization of quadrature formulas,” Ukr. Mat. Zh., 42, No. 1, 18–33 (1990).CrossRefMathSciNetGoogle Scholar
  14. 14.
    S. B. Stechkin and Yu. N. Subbotin, Splines in Computational Mathematics [in Russian], Nauka, Moscow (1976).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • A. A. Ligun
  • A. A. Shumeiko

There are no affiliations available

Personalised recommendations