Skip to main content
Log in

Moduli of continuity defined by zero continuation of functions andK-functionals with restrictions

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

We consider the followingK-functional:

$$K(\delta ,f)_p : = \mathop {\sup }\limits_{g \in W_{p U}^r } \left\{ {\left\| {f - g} \right\|_{L_p } + \delta \sum\limits_{j = 0}^r {\left\| {g^{(j)} } \right\|_{L_p } } } \right\}, \delta \geqslant 0,$$

where ƒ ∈L p :=L p [0, 1] andW r p,U is a subspace of the Sobolev spaceW r p [0, 1], 1≤p≤∞, which consists of functionsg such that\(\int_0^1 {g^{(l_j )} (\tau ) d\sigma _j (\tau ) = 0, j = 1, ... , n} \). Assume that 0≤l l ≤...≤l n r-1 and there is at least one point τ j of jump for each function σ j , and if τ j s forjs, thenl j l s . Let\(\hat f(t) = f(t)\), 0≤t≤1, let\(\hat f(t) = 0\),t<0, and let the modulus of continuity of the functionf be given by the equality

$$\hat \omega _0^{[l]} (\delta ,f)_p : = \mathop {\sup }\limits_{0 \leqslant h \leqslant \delta } \left\| {\sum\limits_{j = 0}^l {( - 1)^j \left( \begin{gathered} l \hfill \\ j \hfill \\ \end{gathered} \right)\hat f( - hj)} } \right\|_{L_p } , \delta \geqslant 0.$$

We obtain the estimates\(K(\delta ^r ,f)_p \leqslant c\hat \omega _0^{[l_1 ]} (\delta ,f)_p \) and\(K(\delta ^r ,f)_p \leqslant c\hat \omega _0^{[l_1 + 1]} (\delta ^\beta ,f)_p \), where β=(pl l + 1)/p(l 1 + 1), and the constantc>0 does not depend on δ>0 and ƒ ∈L p . We also establish some other estimates for the consideredK-functional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Triebel,Integration Theory. Function Spaces. Differential Operators [Russian translation], Mir, Moscow 1980.

    Google Scholar 

  2. G. Radzievskii,The Rate of Convergence of Decompositions of Ordinary Functional-Differential Operators by Eigenfunctions [inRussian], Preprint No. 94.29, Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1994), pp. 14–27.

    MATH  Google Scholar 

  3. G. V. Radzievskii, “Boundary-value problems and moduli of continuity,”Usp. Mat. Nauk,50, No. 4 (1995).

    Google Scholar 

  4. G. V. Radzievskii, “Boundary-value problems and moduli of continuity connected with them,”Funkts. Anal Prilozh.,29, No. 3, 87–90 (1995).

    MathSciNet  Google Scholar 

  5. N. Danford and J. T. Schwartz,Linear Operators. General Theory [Russian translation], Inostrannaya Literatura, Moscow 1962.

    Google Scholar 

  6. Yu. M. Berezanskii,Expansion into Eigenfunctions of Self-Adjoint Operators [in Russian], Naukova Dumka, Kiev 1965.

    Google Scholar 

  7. V. K. Dzyadyk,Introduction into the Theory of Uniform Approximation of Functions by Polynomials [in Russian], Nauka, Moscow(1977).

    Google Scholar 

  8. LA. Schevchuk,Approximation by Polynomials and Traces of Functions Continuous on an Interval [in Russian], Naukova Dumka, Kiev 1992.

    Google Scholar 

  9. G. V. Radzievskii, “Asymptotic in a parameter of the fundamental system of solutions of a linear functionally-differential equations,”Ukr. Mat. Zh.,47, No. 6, 811–836 (1995).

    Article  MathSciNet  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radzievskii, G.V. Moduli of continuity defined by zero continuation of functions andK-functionals with restrictions. Ukr Math J 48, 1739–1757 (1996). https://doi.org/10.1007/BF02529495

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02529495

Keywords

Navigation