Neurochemical Research

, Volume 21, Issue 2, pp 217–229 | Cite as

Cardiac α1-Adrenoceptors that regulate contractile function: Subtypes and subcellular signal transduction mechanismsthat regulate contractile function: Subtypes and subcellular signal transduction mechanisms

  • Masao Endoh
Original Articles

Abstract

Activation of α1-adrenoceptors as well as endothelin (ET) and angiotensin II (Ang II) receptors in cardiac muscle is coupled to acceleration of the hydrolysis of phosphoinositide (PI), with resultant production of inositol 1,4,5-trisphosphate (IP3) and diacylglycerol. There is an excellent correlation between the extent of acceleration of the PI hydrolysis and the positive inotropic effect (PIE) under most experimental conditions after the administration of α-adrenoceptor agonists, ET and Ang II in the rabbit ventricular muscle. The PIE of the α-adrenoceptor agonists, ET and Ang II is associated with a negative lusitropic effect and an increase in the sensitivity of myofilaments to Ca2+ ions. The PIE can be selectively inhibited by inhibitors of protein kinase C (PKC) such as staurosporine, NA 0345 and H-7, with little effect on the PI hydrolysis and the PIE of isoproterenol and Bay k 8644. Surprisingly, an activator of PKC, phorbol 12,13-dibutyrate (PDBu), selectively and more completely inhibited the PIE and acceleration of PI hydrolysis induced by the α-adrenoceptor agonists as well as by ET and Ang II in the rabbit. These receptor agonists consistently cause intracellular alkalinization by activation of Na+−H+ exchange, while the effects on membrane ion channel activities are divergent. For example, α-adrenoceptor agonists cause monophasic prolongation of the action potential, the time course of which coincides well with that of the PIE, while ET and Ang II produce a biphasic change in action potential duration, i.e., the long-lasting prolongation preceded by a transient abbreviation. α-Adrenoceptor agonists scarcely affect ICa, whereas ET elicits a biphasic alteration of the current. In addition, the potassium current, IKl, is markedly suppressed by α-adrenoceptor agonists, but this effect is not revealed with Ang II under the same experimental condition. These results indicate that the effects of α1-adrenoceptors stimulation are partially shared by those of ET and Ang II receptor activation in the heart. Approximately 60% of the total population of α1-adrenoceptors in the rabbit ventricle are composed of α1B subtype, which is susceptible to chlorethylclonidine (CEC) and is predominantly responsible for the α1-mediated PIE and PI hydrolysis. The remaining fraction that belongs to α1A-adrenoceptors subtype is further subclassified into the WB 4101-sensitive (partly coupled to PI hydrolysis) and the niguldipinesensitive (PI hydrolysis-unrelated) subtypes.

Key words

Phenylephrine methoxamine α1A-receptors α1B-receptors endothelin angiotensin II Ca2+ sensitivity phosphoinositide hydrolysis positive inotropic effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Endoh, M. 1991. Myocardial α-adrenoceptors: multiplicity of subcellular coupling processes. Asia Pacific J. Pharmacol. 6:171–186.Google Scholar
  2. 2.
    Endoh, M. 1991. Signal transduction of myocardial α1-adrenoceptors: regulation of ion channels, intracellular calcium, and force of contraction—a review. J. Appl. Cardiol. 6:379–399.Google Scholar
  3. 3.
    Fedida, D., Braun, A. P., and Giles, W. R. 1993. α1-Adrenoceptors in myocardium: functional aspects and transmembrane signaling mechanisms. Physiol. Rev. 73:469–487.PubMedGoogle Scholar
  4. 4.
    Terzic, A., Pucéat, M., Vassort, G., and Vogel, S. M. 1993. Cardiac α1-adrenoceptors: an overview. Pharmacol. Rev. 45:147–175.PubMedGoogle Scholar
  5. 5.
    Endoh, M. 1995. The effects of various drugs on the myocardial inotropic responses. Gen. Pharmacol. 26:1–31.PubMedGoogle Scholar
  6. 6.
    Endoh, M., Hiramoto, T., Ishihata, A., Takanashi, M., and Inui, J. 1991. Myocardial α1-adrenoceptors mediate positive inotropic effect and changes in phosphatidylinositol metabolism. Species differences in receptor distribution and the intracellular coupling process in mammalian ventricular myocardium. Circ. Res. 68: 1179–1190.PubMedGoogle Scholar
  7. 7.
    Yang, H.-T., and Endoh, M. 1994. Dissociation of the positive inotropic effect of methoxamine from the hydrolysis of phosphoinositide in rabbit ventricular myocardium: a comparison with the effects of phenylephrine and the subtype of thealpha-1 adrenoceptor involved. J. Pharmacol. Exp. Ther. 269:732–742.PubMedGoogle Scholar
  8. 8.
    Takanashi, M., and Endoh, M. 1991. Characterization of positive inotropic effect of endothelin on mammalian ventricular myocardium. Am. J. Physiol. 261:H611-H619.PubMedGoogle Scholar
  9. 9.
    Takanashi, M., and Endoh, M. 1992. Concentration- and time-dependence of phosphoinositide hydrolysis induced by endothelin-1 in relation to the positive inotropic effect in the rabbit ventricular myocardium. J. Pharmacol. Exp. Ther. 262:1189–1194.PubMedGoogle Scholar
  10. 10.
    Kasai, H., Takanashi, M., Takasaki, C., and Endoh, M. 1994. Pharmacological properties of endothelin receptor subtypes mediating positive inotropic effects in rabbit heart. Am. J. Physiol. 266:H2220-H2228.PubMedGoogle Scholar
  11. 11.
    Ishihata, A., and Endoh, M. 1993. Pharmacological characteristics of the positive inotropic effect of angiotensin II in the rabbit ventricular myocardium. Br. J. Pharmacol. 108:999–1005.PubMedGoogle Scholar
  12. 12.
    Takanashi, M., Norota, I., and Endoh, M. 1991. Potent inhibitory action of chlorethylclonidine on the positive inotropic effect and phosphoinositide hydrolysis mediated via myocardial alpha1-adrenoceptors in the rabbit ventricular myocardium. Naunyn-Schmiedeberg's Arch. Pharmacol. 343:669–673.CrossRefGoogle Scholar
  13. 13.
    Endoh, M., Takanashi, M., and Norota, I. 1992. Effects of vasopressin on phosphoinositide hydrolysis and myocardial contractility. Eur. J. Pharmacol. 218:355–358.PubMedCrossRefGoogle Scholar
  14. 14.
    Baker, K. M., and Singer, H. A. 1988. Identification and characterization of guinea pig angiotensin II ventricular and atrial receptors: coupling to inositol phosphate production. Circ. Res. 62:896–904.PubMedGoogle Scholar
  15. 15.
    Baker, K. M., and Aceto, J. A. 1989. Characterization of avian angiotensin II cardiac receptors: coupling to mechanical activity and phosphoinositide metabolism. J. Mol. Cell. Cardiol. 21:375–382.PubMedCrossRefGoogle Scholar
  16. 16.
    Endoh, M., Norota, I., Takanashi, M., and Kasai, H. 1993. Inotropic effects of staurosporine, NA 0345 and H-7, protein kinase C inhibitors, on rabbit ventricular myocardium: selective inhibition of the positive inotropic effect mediated by α1-adrenoceptors. Jpn. J. Pharmacol. 63:17–26.PubMedGoogle Scholar
  17. 17.
    Endoh, M., Otomo, J., and Norota, I. 1990. Phorbol-12,13-dibutyrate antagonizes the α1-adrenoceptor-mediated positive inotropic effect in the rabbit ventricular myocardium. Br. J. Clin. Pharmacol. 30:115S-117S.PubMedGoogle Scholar
  18. 18.
    Endoh, M., Otomo, J., Norota, I., and Takanashi, M. 1993. Selective inhibition by phorbol 12,13-dibutyrate of the α1-receptor-mediated positive inotropic effect. Internat. J. Cardiol. 40:191–201.CrossRefGoogle Scholar
  19. 19.
    Endoh, M., and Takanashi, M. 1991. Differential inhibitory action of phorbol-12,13-dibutyrate on the positive inotropic effect of endothelin-1 and Bay K 8644 in the isolated rabbit papillary muscle. J. Cardiovasc. Pharmacol. 17 (suppl. 7):S165-S168.PubMedCrossRefGoogle Scholar
  20. 20.
    Leeb-Lundberg, L. M. F., Cotecchia, S., Lomasney, J. W., Debernardis, J. F., Lefkowitz, R. J., and Caron, M. G. 1985. Phorbol esters promote α1-adrenergic receptor phosphorylation and receptor uncoupling from inositol phospholipid metabolism. Proc. Natl. Acad. Sci. U.S.A. 82:5651–5655.PubMedCrossRefGoogle Scholar
  21. 21.
    Katada, T., Gilman, A. G., Watanabe, Y., Bauer, S., and Jakobs, K. H. 1985. Protein kinase C phosphorylates the inhibitory guanine-nucleotide-binding regulatory component and apparently suppresses its function in hormonal inhibition of adenylate cyclase. Eur. J. Biochem. 151:431–437.PubMedCrossRefGoogle Scholar
  22. 22.
    Otani, H., Otani, H., and Das, D. K. 1988. α1-Adrenoceptor-mediated phosphoinositide breakdown and inotropic response in rat left ventricular papillary muscles. Circ. Res. 62:8–17.PubMedGoogle Scholar
  23. 23.
    Satoh, H., Hiramoto, T., and Endoh, M. 1987. Does pertussis toxin (IAP) modify the muscarinic and alpha receptor-mediated positive inotropic effects in the rabbit myocardium? Asia Pacific J. Pharmacol. 2:107–114.Google Scholar
  24. 24.
    Hilal-Dandan, R., Urasawa, K., and Brunton, L. L. 1992. Endothelin inhibits adenylate cyclase and stimulates phosphoinositide hydrolysis in adult cardiac myocytes. J. Biol. Chem. 267: 10620–10624.PubMedGoogle Scholar
  25. 25.
    Hilal-Dandan, R., Merck, D. T., Lujan, J. P., and Brunton, L. L. 1994. Coupling of the type A endothelin receptor to multiple responses in adult rat cardiac myocytes. Mol. Pharmacol. 45: 1183–1190.PubMedGoogle Scholar
  26. 26.
    Jones, L. G., Rozich, J. D., Tsutsui, H., and Cooper, G. IV 1992. Endothelin stimulates multiple responses in isolated adult ventricular cardiac myocytes. Am. J. Physiol. 263:H1447-H1454.PubMedGoogle Scholar
  27. 27.
    Endoh, M. 1986. Regulation of myocardial contractility via adrenoceptors: differential mechanisms of α- and β-adrenoceptor-mediated actions. Pages 78–105,in Grobecker, H., Philippu, A., and Starke, K. (eds), New Aspects of the Role of Adrenoceptors in the Cardiovascular System, Springer-Verlag, Berlin, Heidelberg.Google Scholar
  28. 28.
    Endoh, M., and Blinks, J. R. 1988. Actions of sympathomimetic amines on the Ca2+ transients and contractions of rabbit myocardium: reciprocal changes in myofibrillar responsiveness to Ca2+ mediated through α- and β-adrenoceptors. Circ. Res. 62:247–265.PubMedGoogle Scholar
  29. 29.
    Wang, J. X., Paik, G., and Morgan, J. P. 1991. Endothelin-1 enhances myofilament Ca2+-responsiveness in aequorin-loaded ferret myocardium. Circ. Res. 69:582–589.PubMedGoogle Scholar
  30. 30.
    Keely, R. A., Eid, H., Krämer, B. K., O'Neil, M., Liang, B. T., Reers, M., and Smith, T. W. 1990. Endothelin enhances the contractile responsiveness of adult rat ventricular myocytes to calcium by a pertussis toxin-sensitive pathway. J. Clin. Invest. 86: 1164–1171.CrossRefGoogle Scholar
  31. 31.
    Krämer, B. K., Smith, T. W., and Keely, R. A. 1991. Endothelin and increased contractility in adult rat ventricular myocytes: role of intracellular alkalosis induced by activation of the protein kinase C-dependent N+−H+ exchanger. Circ. Res. 68:269–279.PubMedGoogle Scholar
  32. 32.
    Ikenouchi, H., Barry, W. H., Bridge, J. H. B., Weinberg, E. O., Apstein, C. S., and Lorell, B. H. 1994. Effects of angiotensin II on intracellular Ca2+ and pH in isolated beating rabbit hearts and myocytes loaded with the indicator indo-1. J. Physiol. (Lond.) 480:203–215.Google Scholar
  33. 33.
    Terzic, A., Pucéat, M., Clément, O., Scamps, F., and Vassort, G. 1992. α1-Adrenergic effects on intracellular pH and calcium and on myofilaments in single rat cardiac cells. J. Physiol. (Lond.) 447:275–292.Google Scholar
  34. 34.
    Gambassi, G., Spurgeon, H. A., Lakatta, E. G., Blank, P. S., and Capogrossi, M. C. 1992. Different effects of α- and β-adrenergic stimulation on cytosolic pH and myofilament responsiveness to Ca2+ in cardiac myocytes. Circ. Res. 71:870–882.PubMedGoogle Scholar
  35. 35.
    Katoh, N., Wise, B. C., and Kuo, J. F. 1983. Phosphorylation of cardiac troponin inhibitory subunit (troponin I) and tropomyosin-binding subunit (troponin T) by cardiac phospholipid-sensitive Ca2+-dependent protein kinase. Biochem. J. 209:189–195.PubMedGoogle Scholar
  36. 36.
    Noland, T. A., Jr., Raynor, R. L., and Kuo, J. F. 1989. Identification of sites phosphorylated in bovine cardiac troponin I and troponin T by protein kinase C and comparative substrate activity of synthetic peptides containing the phosphorylation sites. J. Biol. Chem. 264:20778–20785.PubMedGoogle Scholar
  37. 37.
    Edes, I., and Kranias, E. G. 1990. Phospholamban and troponin I are substrates for protein kinase C in vitro but not in intact beating guinea pig hearts. Circ. Res. 67:394–400.PubMedGoogle Scholar
  38. 38.
    Leatherman, G. F., Kim, D., and Smith, T. W. 1987. Effect of phorbol esters on contractile state and calcium flux in cultured chick heart cells. Am. J. Physiol. 253:H205-H209.PubMedGoogle Scholar
  39. 39.
    Yuan, S., Sunahara, F. A., and Sen, A. K. 1987. Tumor-promoting phorbol esters inhibit cardiac functions and induce redistribution of protein kinase C in perfused beating rat heart. Circ. Res. 61:372–378.PubMedGoogle Scholar
  40. 40.
    Dösemeci, A., Dhallan, R. S., Cohen, N. M., Lederer, W. J., and Rogers, T. B. 1988. Phorbol ester increases calcium current and simulates the effects of angiotensin II on cultured neonatal rat heart myocytes. Circ. Res. 62:347–357.PubMedGoogle Scholar
  41. 41.
    Capogrossi, M. C., Kaku, T., Filburn, C. R., Pelto, D. J., Hansford, R. G., Spurgeon, H. A., and Lakatta, E. G. 1990. Phorbol ester and dioctanoylglycerol stimulate membrane association of protein kinase C and have a negative inotropic effect mediated by changes in cytosolic Ca2+ in adult rat cardiac myocytes. Circ. Res. 66:1143–1155.PubMedGoogle Scholar
  42. 42.
    Gwathmay, J. K., and Hajjar, R. J. 1990. Effect of protein kinase C activation on sarcoplasmic reticulum function and apparent myofibrillar Ca2+ sensitivity in intact and skinned muscles from normal and diseased human myocardium. Circ. Res. 67:744–752.Google Scholar
  43. 43.
    Teutsch, I., Weible, A., and Siess, M. 1987. Differential inotropic and chronotropic effects of various protein kinase C activators on isolated guinea pig atria. Eur. J. Pharmacol. 144:363–367.PubMedCrossRefGoogle Scholar
  44. 44.
    MacLeod, K. T., and Harding, S. E. 1991. Effects of phorbol ester on contraction, intracellular pH and intracellular Ca2+ in isolated mammalian ventricular myocytes. J. Physiol. (Lond.) 444:481–498.Google Scholar
  45. 45.
    Endoh, M., Shimizu, T., and Yanagisawa, T. 1978. Characterization of adrenoceptors mediating positive inotropic responses in the ventricular myocardium of the dog. Br. J. Pharmacol. 64:53–61.PubMedGoogle Scholar
  46. 46.
    Ishihata, A., and Endoh, M. 1995. Species-related differences in inotropic effects of angiotensin II in mammalian ventricular muscle: receptors, subtypes and phosphoinositide hydrolysis. Br. J. Pharmacol. 114:447–453.PubMedGoogle Scholar
  47. 47.
    Endoh, M. 1982. Adrenoceptors and the myocardial inotropic response: do alpha and beta receptor sites functionally coexist? Pages 303–322,in Kalsner, S. (ed.) Trends in Autonomic Pharmacology, vol. 2, Urban & Schwarzenberg, Baltimore, Munich.Google Scholar
  48. 48.
    Timmermans, P. B. M. W. M., Wong, P. C., Chiu, A. T., Herblin, W. F., Benfield, P., Carini, D. J., Lee, R. J., Wexler, R. R., Saye, J. A. M., and Smith, R. D. 1993. Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol. Rev. 45:205–251.PubMedGoogle Scholar
  49. 49.
    Freer, R. J., Pappano, A. J., Peach, M. J., Bing, K. T., McLean, M. J., Vogel, S., and Sperelakis, N. 1976. Mechanism for the positive inotropic effect of angiotensin II on isolated cardiac muscle. Circ. Res. 39:178–182.PubMedGoogle Scholar
  50. 50.
    Kass, R. S., and Blair, M. L. 1981. Effects of angiotensin II on membrane current in cardiac Purkinje fibers. J. Mol. Cell. Cardiol. 13:797–809.PubMedCrossRefGoogle Scholar
  51. 51.
    Rogers, T. B., Gaa, S. T., and Allen, I. S. 1986. Identification and characterization of functional angiotensin II receptors on cultured heart myocytes. J. Pharmacol. Exp. Ther. 236:438–444.PubMedGoogle Scholar
  52. 52.
    Kem, D. C., Johnson, E. I. M., Capponi, A. M., Chardonnens, D., Lang, U., Blondel, B., Koshida, H., and Vallotton, M. B. 1991. Effect of angiotensin II on cytosolic free calcium in neonatal rat cardiomyocytes. Am. J. Physiol. 261:C77-C85.PubMedGoogle Scholar
  53. 53.
    Moravec, C. S., Reynolds, E. E., Stewart, R. W., and Bond, M. 1989. Endothelin is a positive inotropic agent in human and rat heartin vitro. Biochem. Biophys. Res. Commun. 159:14–18.PubMedCrossRefGoogle Scholar
  54. 54.
    Chen, S.-A., Chang, M.-S., Chiang, B. N., Cheng, K.-K., and Lin, C.-I. 1991. Electromechanical effects of angiotensin in human atrial tissues. J. Mol. Cell. Cardiol. 23:483–493.PubMedCrossRefGoogle Scholar
  55. 55.
    Meulemans, A. L., Andries, L. J., and Brutsaert, D. L. 1990. Does endocardial endothelium mediate positive inotropic response to angiotensin I and angiotensin II? Circ. Res. 66:1591–1601.PubMedGoogle Scholar
  56. 56.
    Kobayashi, M., Furukawa, Y., and Chiba, S. 1978. Positive chronotropic and inotropic effects of angiotensin II in the dog heart. Eur. J. Pharmacol. 50:17–25.PubMedCrossRefGoogle Scholar
  57. 57.
    Zhang, J., Pfaffendorf, M., and van Zwieten, P.A. 1993. Positive inotropic action of angiotensin II in the pithed rat. Naunyn-Schmiedeberg's Arch. Pharmacol. 347:658–663.CrossRefGoogle Scholar
  58. 58.
    Feolde, E., Vigne, P., Frelin, C. 1993. Angiotensin AT1 receptors mediate a positive inotropic effect of angiotensin II in guinea pig atria. Eur. J. Pharmacol. 245:63–66.PubMedCrossRefGoogle Scholar
  59. 59.
    Wright, G. B., Alexander, R. W., Ekstein, L. S., and Gimborne, M. A. Jr., 1983. Characterization of the rabbit ventricular myocardial receptor for angiotensin II. Mol. Pharmacol. 24:213–221.PubMedGoogle Scholar
  60. 60.
    Baker, K. M., Campanile, C. P., Trachte, G. J., and Peach, M. J. 1984. Identification and characterization of the rabbit angiotensin II myocardial receptor. Circ. Res. 54:286–293.PubMedGoogle Scholar
  61. 61.
    Bonnardeaux, J. L., Park, W. K., and Regoli, D. 1977. Effects of angiotensins and catecholamines on the transmembrane potential and isometric force of rabbit isolated atria. Arch. Int. Pharmacodyn. 229:83–94.PubMedGoogle Scholar
  62. 62.
    Iwakura, K., Hori, M., Watanabe, Y., Kitabatake, A., Cragoe, E. J. Jr., Yoshida, H., and Kamada, T. 1990. α1-Adrenoceptor stimulation increases intracellular pH and Ca2+ in cardiomyocytes through Na+/H+ and Na+/Ca2+ exchange. Eur. J. Pharmacol. 186: 29–40.PubMedCrossRefGoogle Scholar
  63. 63.
    Otani, H., Otani, H., Uriu, T., Hara, M., Inoue, M., Omori, K., Cragoe, E. J. Jr., and Inagaki, C. 1990. Effects of inhibitors of protein kinase C and Na+/K+ exchange on α1-adrenoceptor-mediated inotropic responses in the rat left ventricular papillary muscle. Br. J. Pharmacol. 100:207–210.PubMedGoogle Scholar
  64. 64.
    Pucéat, M., Clément, O., Lechene, P., Pelosin, J. M., Ventura-Clapier, R., and Vassort, G. 1990. Neurohormonal control of calcium sensitivity of myofilaments in rat single cells. Circ. Res. 67:517–524.PubMedGoogle Scholar
  65. 65.
    Endoh, M., Morita, H., and Kimura, J. 1996. The role phosphoinositide hydrolysis in the regulation of cardiac function via α-adrenergic, endothelin and angiotensin receptors,in Endoh, M., Morad, M., Scholz, H., and Iijima, T. (eds.) Molecular and Cellular Mechanisms of Cardiovascular Regulation, Springer Verlag, Tokyo (in press).Google Scholar
  66. 66.
    Hartmann, H. A., Mazzocca, N. J., Kleiman, R. B., Houser, S. R. 1988. Effects of phenylephrine on calcium current and contractility of feline ventricular myocytes. Am. J. Physiol. 255: H1173-H1180.PubMedGoogle Scholar
  67. 67.
    Hescheler, J., Nawrath, H., Tang, M., and Trautwein, W. 1988. Adrenoceptor-mediated changes of excitation and contraction in ventricular heart muscle from guinea-pigs and rabbits. J. Physiol. (Lond.) 397:657–670.Google Scholar
  68. 68.
    Fedida, D., and Bouchard, R. A. 1992. Mechanisms for the positive inotropic effect of α1-adrenoceptor stimulation in rat cardiac myocytes. Circ. Res. 71:673–688.PubMedGoogle Scholar
  69. 69.
    Kushida, H., Hiramoto, T., and Endoh, M. 1990. The preferential inhibition of α1- over β-adrenoceptor-mediated positive inotropic effect by organic calcium antagonists in the rabbit papillary muscle. Naunyn-Schmiedeberg's Arch. Pharmacol. 341:206–214.CrossRefGoogle Scholar
  70. 70.
    Tohse, N., Hattori, Y., Nakaya, H., Endou, M., and Kanno, M. 1990. Inability of endothelin to increase Ca2+ current in guinea-pig heart cells. Br. J. Pharmacol. 99:437–438.PubMedGoogle Scholar
  71. 71.
    Lauer, M. R., Gunn, M. D., and Clusin, W. T. 1992. Endothelin activates voltage-dependent Ca2+ current by a G protein-dependent mechanism in rabbit cardiac myocytes. J. Physiol. (Lond.) 448:729–747.Google Scholar
  72. 72.
    Fedida, D., Shimoni, Y., and Giles, W. R. 1990. α-Adrenergic modulation of the transient outward current in rabbit atrial myocytes. J. Physiol. (Lond.) 423:257–277.Google Scholar
  73. 73.
    Apkon, M., and Nerbonne, J. M. 1988. α1-Adrenergic agonists selectively suppress voltage-dependent K+ currents in rat ventricular myocytes. Proc. Natl. Acad. Sci. U.S.A. 85:8756–8760.PubMedCrossRefGoogle Scholar
  74. 74.
    Ravens, U., Wang, X.-L., and Wettwer, E. 1989.Alpha adrenoceptor stimulation reduces outward currents in rat ventricular myocytes. J. Pharmacol. Exp. Ther. 250:364–370.PubMedGoogle Scholar
  75. 75.
    Fedida, D., Braun, A. P., and Giles, W. R. 1991. α1-Adrenoceptors reduce background K+ current in rabbit ventricular myocytes. J. Physiol. (Lond.) 441:673–684.Google Scholar
  76. 76.
    Endoh, M., Morita, H., and Kimura, J. 1993. Activation of chloride channel via AT1 angiotensin receptors in rabbit ventricular myocytes. Circulation 88(suppl. 2) I-31.Google Scholar
  77. 77.
    Morita, H., Kimura, J., and Endoh, M. 1995. Angiotensin II activation of a chloride current in rabbit cardiac myocytes. J. Physiol. (Lond.) 483:119–130.Google Scholar
  78. 78.
    Dirsken, R. T., and Shue, S. S. 1990. Modulation of ventricular action potential by α1-adrenoceptors and protein kinase C. Am. J. Physiol. 258:H907-H911.Google Scholar
  79. 79.
    Habuchi, Y., Tanaka, H., Furukawa, T., Tsujimura, Y., Takahashi, H., and Yoshimura, M. 1992. Endothelin enhances delayed potassium current via phospholipase C in guinea pig ventricular myocytes. Am. J. Physiol. 262:H345-H354.PubMedGoogle Scholar
  80. 80.
    Ishii, K., Numoki, K., Murakoshi, H., and Taira, N. 1992. Cloning and modulation by endothelin-1 of rat cardiac K channel. Biochem. Biophys. Res. Commun. 184:1484–1489.PubMedCrossRefGoogle Scholar
  81. 81.
    Kim, D. 1991. Endothelin activation of an inwardly rectifying K+ current in atrial cells. Circ. Res. 69:250–255.PubMedGoogle Scholar
  82. 82.
    Wallert, M. A., and Fröhlich, O. 1992. α1-Adrenergic stimulation of Na−H exchange in cardiac myocytes. Am. J. Physiol. 263: C1096-C1102.PubMedGoogle Scholar
  83. 83.
    Kohomoto, O., Ikenouchi, H., Hirata, Y., Momomura, S., Serizawa, T., and Barry, W. H. 1993. Variable effects of endothelin-1 on [Ca2+]i transients, pHi, and contraction in ventricular myocytes. Am. J. Physiol. 265:H793-H800.Google Scholar
  84. 84.
    Matsui, H., Barry, W. H., Livsey, C., and Spitzer, K. W. 1995. Angiotensin II stimulates sodium-hydrogen exchange in adult rabbit ventricular myocytes. Cardiovasc. Res. 29:215–221.PubMedCrossRefGoogle Scholar
  85. 85.
    Ono, K., Tsujimoto, G., Sakamoto, A., Eto, K., Masaki, T., Ozaki, Y., and Satake, M. 1994. Endothelin-A receptor mediates cardiac inhibition by regulating calcium and potassium currents. Nature (Lond.) 370:301–304.CrossRefGoogle Scholar
  86. 86.
    Endoh, M., Takanashi, M., and Norota, I. 1992. Myocardial α-adrenoceptor-mediated signal transduction process: receptor subtypes and phosphoinositide hydrolysis. Pages 67–83,in Fujiwara, M., Sugimoto, T., and Kogure, K. (eds.) α-Adrenoceptors: Signal transduction, ionic channels and effector organs, Excerpta Medica, Tokyo.Google Scholar
  87. 87.
    Endoh, M., Takanashi, M., and Norota, I. 1992. Effect of (+)-niguldipine on myocardial α1-adrenoceptors in the rabbit. Eur. J. Pharmacol. 223:143–151.PubMedCrossRefGoogle Scholar
  88. 88.
    Kohi, M., Yang, H.-T., and Endoh, M. 1993. Myocardial α1-adrenoceptor subtypes in rabbit: differentiation by a selective antagonist, HV723. Eur. J. Pharmacol. 250:95–101.PubMedCrossRefGoogle Scholar
  89. 89.
    Gross, G., Hanft, G., and Rugevics, C. 1988. 5-Methyl-urapidil discriminates between subtypes of the α1-adrenoceptor. Eur. J. Pharmacol. 151:333–335.PubMedCrossRefGoogle Scholar
  90. 90.
    Sallés, J., Gascón, S., Ivorra, D., and Badia, A. 1994. In vivo recovery of α1-adrenoceptors in rat myocardial tissue after alkylation with phenoxybenzamine. Eur. J. Pharmacol. 266:35–42.PubMedCrossRefGoogle Scholar
  91. 91.
    Endoh, M., Takanashi, M., Norota, I. 1992. Role of alpha1A adrenoceptor subtype in production of the positive inotropic effect mediated via myocardial alpha1 adrenoceptors in the rabbit papillary muscle: influence of selective alpha1A subtype antagonists WB 4101 and 5-methylurapidil. Naunyn-Schiedeberg's Arch. Pharmacol. 345:578–585.Google Scholar
  92. 92.
    Kohi, M., Norota, I., Takanashi, M., and Endoh, M. 1993. On the mechanism of action of thebeta-1 partial agonist denopamine in regulation of myocardial contractility: effects on myocardialalpha adrenoceptors and intracellular Ca++ transients. J. Pharmacol. Exp. Ther. 265:1292–1300.PubMedGoogle Scholar
  93. 93.
    Williamson, A.P., Seifen, E., Lindemann, J. P., and Kennedy, R. H. 1994. Effects of WB4101 and chloroethylclonidine on the positive and negative inotropic actions of phenylephrine in rat cardiac muscle. J. Pharmacol. Exp. Ther. 268:1174–1182.PubMedGoogle Scholar
  94. 94.
    Shah, A., Cohen, I. S., and Rosen, M. R. 1988. Stimulation of cardiac alpha receptors increases Na/K pump current and decreases gk via a pertussis toxin-sensitive pathway. Biophys. J. 54:219–225.PubMedCrossRefGoogle Scholar
  95. 95.
    Zaza, A., Kline, R. P., and Rosen, M. R. 1990. Effects of α-adrenergic stimulation on intracellular sodium activity and automaticity in canine Purkinje fibers. Circ. Res. 66:416–426.PubMedGoogle Scholar
  96. 96.
    Tohse, N., Kameyama, M., and Irisawa, H. 1987. Intracellular Ca2+ and protein kinase C modulate K+ current in guinea pig heart cells. Am. J. Physiol. 253:H1321-H1324.PubMedGoogle Scholar
  97. 97.
    Kurachi, Y., Ito, H., Sugimoto, T., Miki, I., and Ui, M. 1989. α-Adrenergic activation of the muscarinic K+ channel is mediated by arachidonic acid metabolites. Pflügers Arch. 414:102–104.PubMedCrossRefGoogle Scholar
  98. 98.
    Yang, H.-T., Norota, I., Zhu, Y., Endoh, M. 1995. Selective inhibition by methoxamine via α1A-adrenoceptors of the positive inotropic effect of endothelin in rabbit ventricular myocardium. Heart Vessels Suppl. 10:30.Google Scholar
  99. 99.
    Yang, H.-T., Norota, I., Zhu, Y., Endoh, M. 1996. Methoxamine-induced inhibition of the positive inotropic effect of endothelin via α1-adrenoceptors in the rabbit heart. Eur. J. Pharmacol. 296: 47–54.PubMedCrossRefGoogle Scholar
  100. 100.
    James, A. F., Xie, L.-H., Fujitani, Y., Hayashi, S., and Horie, M. 1994. Inhibition of the cardiac protein kinase A-dependent chloride conductance by endothelin-1. Nature (Lond.) 370:297–300.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Masao Endoh
    • 1
  1. 1.Department of PharmacologyYamagata University School of MedicineYamagataJapan

Personalised recommendations