Skip to main content

Advertisement

Log in

Inactivation of topoisomerase I or II may lead to recombination or to aberrant replication termination on both SV40 and yeast 2 μm DNA

  • Original Articles
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Topoisomerase I is believed to be sufficient for early replication of circular viral genomes such as those of SV40 and of yeast plasmids. Topoisomerase II is required for the decatenation of the daughter genomes and probably also for fork elongation during the later stages of SV40 replication. Using the neutral-neutral two-dimensional gel system, we have followed the progression of replication of both SV40 and the yeast 2μm plasmid under various conditions of topoisomerase inhibition. During SV40 replication, inhibition of topoisomerase II by VP16, VM26 or hypertonic shock (but not by merbarone), and inhibition of topoisomerase I by camptothecin all led to the accumulation of aberrant DNA structures containing two almost completely replicated genomes. These aberrant structures resembled either recombination intermediates or late Cairns structures in which the site of replication termination had shifted and now mapped to a continuum of sites throughout the genome. Replication of the 2 μm plasmid in a topoisomerase II- but not a topoisomerase I-deficient yeast gave rise to very similar structures. The data suggest that inactivation of topoisomerase I or II either stimulates recombination or, by differentially affecting replication fork progression, leads to aberrant replication termination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avemann K, Knippers R, Koller T, Sogo JM (1988) Camptothecin, a specific inhibitor of type I DNA topoisomerase, induces DNA breakage at replication forks. Mol Cell Biol 8:3026–3034

    PubMed  CAS  Google Scholar 

  • Bell L, Byers B (1979) Occurence of crossed strand-exchange forms in yeast DNA during meiosis. Proc Natl Acad Sci (USA) 76:3445–3449

    Article  CAS  Google Scholar 

  • Bell L, Byers B (1983) Separation of branched from linear DNA by two-dimensional gel electrophoresis. Anal Biochem 130:527–535

    Article  PubMed  CAS  Google Scholar 

  • Brewer BJ, Fangman WL (1987) The localization of replication origins on ARS plasmids inS. cerevisiae. Cell 51:463–471

    Article  PubMed  CAS  Google Scholar 

  • BrewerBJ, Fangman WL (1988) A replication fork barrier at the 3′ end of yeast ribosomal RNA genes. Cell 55:637–643

    Article  PubMed  CAS  Google Scholar 

  • Brewer BJ, Fangman WL (1993) Initiation at closely spaced replication origins in a yeast chromosome. Science 262:1728–1731

    Article  PubMed  CAS  Google Scholar 

  • Brewer BJ, Fangman WL (1994) Initiation preference at a yeast origin of replication. Proc Natl Acad Sci USA 91:3418–3422

    Article  PubMed  CAS  Google Scholar 

  • Brewer BJ, Lockshon D, Fangman WL (1992) The arrest of replication forks in the rDNA of yeast occurs independently of transcription. Cell 71:267–276

    Article  PubMed  CAS  Google Scholar 

  • Brill SJ, DiNardo S, Voelkel-Meiman K, Sternglanz R (1987) Need for DNA topoisomerase activity as a swivel for DNA replication for transcription of ribosomal RNA. Nature 326:414–416

    Article  PubMed  CAS  Google Scholar 

  • Brockman WW, Gutai MW, Nathans D (1975) Evolutionary variants of simian virus 40: characterisation of cloned complementing variants. Virology 66:36–52

    Article  PubMed  CAS  Google Scholar 

  • Caddle MS, Calos MP (1994) Specific initiation at an origin of replication fromSchizosaccharomyces pombe. Mol Cell Biol 14:1796–1805

    PubMed  CAS  Google Scholar 

  • Charron M, Hancock R (1990) Roles of DNA topoisomerases I and II in DNA replication, mitotic chromosome formation, and recombination in mammalian cells. In: Harris JR, Zbarsky IB (eds) Nuclear structure and function. Plenum Press, New York, pp 405–411

    Google Scholar 

  • Charron M, Hancock R (1991) Chromosome recombination and defective genome segragation induced in chinese hamster cells by the topoisomerase II inhibitor VM-26. Chromosoma 100:97–102

    Article  PubMed  CAS  Google Scholar 

  • Delidakis C, Kafatos FC (1989) Amplification enhancers and replication origins in the autosomal chorion gene cluster ofDrosophila. EMBO J 8:891–901

    PubMed  CAS  Google Scholar 

  • Depamphilis ML, Bradley MK (1986) Replication of simian virus 40 and polyoma virus genomes. In: Salzman NP (ed) The Papovaviridae, vol 1, Plenum Press, New York, pp 99–246

    Google Scholar 

  • Dijkwel PA, Vaughn JP, Hamlin JL (1991) Mapping of replication initiation sites in mammalian genomes by two-dimensional gel analysis: stabilization and enrichment of replication intermediates by isolation on the nuclear matrix. Mol Cell Biol 11:3850–3859

    PubMed  CAS  Google Scholar 

  • DiNardo S, Voelkel K, Sternglanz R (1984) DNA topoisomerase II mutant ofSaccharomyces cerevisiae: topoisomerase II is required for segregation of daughter molecules at the termination of DNA replication. Proc Natl Acad Sci USA 81:2616–2620

    Article  PubMed  CAS  Google Scholar 

  • Drake FH, Hofmann GA, Mong S-M, Bartus JO, Hertzberg RP, Johnson RK, Mattern MR, Mirabelli CK (1989) In vitro and intracellular inhibition of topoisomerase II by the antitumor agent Merbarone. Cancer Res 49:2578–2583

    PubMed  CAS  Google Scholar 

  • Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13

    Article  PubMed  CAS  Google Scholar 

  • Feinberg AP, Vogelstein B (1984) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Addendum. Anal Biochem 137:266–267

    Article  PubMed  CAS  Google Scholar 

  • Gahn TA, Schildkraut CL (1989) The Epstein-Barr virus origin of plasmid replication, oriP, contains both the initiation and termination sites of DNA replication. Cell 58:527–535

    Article  PubMed  CAS  Google Scholar 

  • Heck MMS, Spradling AC (1990) Multiple replication origins are used duringDrosophila chorion gene amplification. J Cell Biol 110:903–914

    Article  PubMed  CAS  Google Scholar 

  • Hernández P, Mart’n-Parras L, Mart’nez-Robles ML, Schvartzman JB (1993) Conserved features in the mode of replication of eukaryotic ribosomal RNA genes. EMBO J 12:1475–1485

    PubMed  Google Scholar 

  • Hirt B (1967) Selective extraction of polyoma DNA from infected mouse cell cultures. J Mol Biol 26:365–369

    Article  PubMed  CAS  Google Scholar 

  • Holm C, Goto T, Wang JC, Botstein D (1985) DNA topoisomerase II is required at the time of mitosis in yeast. Cell 41:553–563

    Article  PubMed  CAS  Google Scholar 

  • Huberman JA, Spotila LA, Nawotka KA, El-Assouli SM, Davis LR (1987) The in vivo replication origin of the yeast 2 μm plasmid. Cell 51:473–481

    Article  PubMed  CAS  Google Scholar 

  • Ishimi Y, Sugasawa K, Hanaoka F, Eki T, Hurwitz J (1992) Topoisomerase II plays an essential role as a swivelase in the late stage of SV40 chromosome replication in vitro. J Biol Chem 267:462–466

    PubMed  CAS  Google Scholar 

  • Kim RA, Wang JC (1989) Function of DNA topoisomerases as replication swivels inSaccharomyces cerevisiae. J Mol Biol 208:257–267

    Article  PubMed  CAS  Google Scholar 

  • Krysan PJ, Calos MP (1991) Replication initiates at multiple locations on an autonomously replicating plasmid in human cells. Mol Cell Biol 11:1464–1472

    PubMed  CAS  Google Scholar 

  • Lai C-J, Nathans D (1975) Non-specific termination of simian virus 40 DNA replication. J Mol Biol 97:113–118

    Article  PubMed  CAS  Google Scholar 

  • Lee MP, Hsieh T (1992) Incomplete reversion of double stranded DNA cleavage mediated byDrosophila topoisomerase II: formation of single stranded DNA cleavage complex in the presence of an anti-tumor drug VM26. Nucleic Acids Res 20:5027–5033

    PubMed  CAS  Google Scholar 

  • Lim M, Liu LF, Jacobson-Kram D, Williams D (1986) Induction of sister chromatid exchanges by inhibitors of topoisomerases. Cell Biol Toxicol 2:485–496

    Article  PubMed  CAS  Google Scholar 

  • Linskens MHK, Huberman JA (1988) Organization of replication of ribosomal DNA inSaccharomyces cerevisiae. Mol Cell Biol 8:4927–4935

    PubMed  CAS  Google Scholar 

  • Linskens MHK, Huberman JA (1990) Ambiguities in results obtained with 2D gel replicon mapping techniques. Nucleic Acids Res 18:647–652

    PubMed  CAS  Google Scholar 

  • Liu LF (1989) DNA topoisomerase poisons as antitumor drugs. Annu Rev Biochem 58:351–375

    Article  PubMed  CAS  Google Scholar 

  • Mart’n-Parras L, Hernández P, Mart’nez-Robles ML, SchvartzmanJB (1991) Unidirectional replication as visualized by two-dimensional agarose gel electrophoresis. J Mol Biol 220:843–853

    Article  Google Scholar 

  • Oppenheim A (1981) Separation of closed circular DNA from linear DNA by electrophoresis in two dimensions in agarose gels. Nucleic Acids Res 9:6805–6812

    PubMed  CAS  Google Scholar 

  • Reynolds AE, McCarroll RM, Newlon CS, Fangman WL (1989) Time of replication of ARS elements along yeast chromosome III. Mol Cell Biol 9:4488–4494

    PubMed  CAS  Google Scholar 

  • Richter A, Strausfeld U (1988) Effects of VM26, a specific inhibitor of type II DNA topoisomerase, on SV40 chromatin replication in vitro. Nucleic Acids Res 21:10119–10129

    Google Scholar 

  • Richter A, Strausfeld U, Knippers R (1987) Effects of VM26 (teniposide), a specific inhibitor of type II DNA topoisomerase, on SV40 DNA replication in vivo. Nucleic Acids Res 15:3455–3468

    PubMed  CAS  Google Scholar 

  • Shinomiya T, Ina S (1993) DNA replication of histone gene repeats inDrosophila melanogaster tissue culture cells: multiple initiation sites and replication pause sites. Mol Cell Biol 13:4098–4106

    PubMed  CAS  Google Scholar 

  • Snapka RM (1986) Topoisomerase inhibitors can selectively interfere with different stages of simian virus 40 DNA replication. Mol Cell Biol 6:4221–4227

    PubMed  CAS  Google Scholar 

  • Snapka RM, Permana PA (1993) Sv40 DNA replication intermediates: analysis of drugs which target mammalian DNA replication. Bioessays 15:121–127

    Article  PubMed  CAS  Google Scholar 

  • Snapka RM, Powelson MA, Strayer JM (1988) Swiveling and decatenation of replicating simian virus 40 genomes in vivo. Mol cell Biol 8:515–521

    PubMed  CAS  Google Scholar 

  • Sundin O, Varshavsky A (1980) Terminal stages of SV40 DNA replication proceed via multiply intertwined catenated dimers. Cell 21:103–114

    Article  PubMed  CAS  Google Scholar 

  • Sundin O, Varshavsky A (1981) Arrest of segregation leads to accumulation of highly intertwined catenated dimers: dissection of the final stages of SV40 DNA replication. Cell 25:659–669

    Article  PubMed  CAS  Google Scholar 

  • Tapper DP, Depamphilis ML (1978) Discontinuous DNA replication: accumulation of simian virus 40 DNA at specific stages in its replication. J Mol Biol 120:401–422

    Article  PubMed  CAS  Google Scholar 

  • Thrash C, Voelkel K, DiNardo S, Sternglanz R (1984) Identification ofSaccharomyces cerevisiae mutants deficient in DNA topoisomerase I activity. J Biol Chem 259:1375–1377

    PubMed  CAS  Google Scholar 

  • Tsao YP, Russo A, Nyamuswa G, Silber R, Liu LF (1993) Interaction between replication forks and topoisomerase I-DNA cleavable complexes: studies in a cell-free SV40 DNA replication system. Cancer Res 53:5908–5914

    PubMed  CAS  Google Scholar 

  • Uemura T, Ohkura H, Adachi Y, Morino K, Shiozaki K, Yanagida M (1987) DNA topoisomerase II is required for condensation and separation of mitotic chromosomes inS. pombe. Cell 50:917–925

    Article  PubMed  CAS  Google Scholar 

  • Umek RM, Linskens MHK, Kowalski D, Huberman JA (1989) New beginnings in studies of eukaryotic DNA replication origins. Biochim Biophys Acta 1007:1–14

    PubMed  CAS  Google Scholar 

  • Vaughn JP, Dijkwel PA, Hamlin JL (1990) Replication initiates in a broad zone in the amplified CHO dihydrofolate reductase domain. Cell 61:1075–1087

    Article  PubMed  CAS  Google Scholar 

  • Wang JC (1985) DNA topoisomerases. Annu Rev Biochem 54:665–697

    Article  PubMed  CAS  Google Scholar 

  • Weaver DT, Fields-Berry SC, Depamphilis ML (1985) The termination region for SV40 DNA replication directs the mode of separation for the two sibling molecules. Cell 41:565–575

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Wold MS, Li JJ, Kelly TJ, Liu LF (1987) Roles of DNA topoisomerases in simian virus 40 DNA replication in vitro. Proc Natl Acad Sci USA 84:950–954

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Newlon CS, Huberman JA (1992) Localization of a DNA replication origin and termination zone on chromosome III ofSaccharomyces cerevisiae. Mol Cell Biol 12:4733–4741

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Moss.

Additional information

Edited by: J. Huberman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levac, P., Moss, T. Inactivation of topoisomerase I or II may lead to recombination or to aberrant replication termination on both SV40 and yeast 2 μm DNA. Chromosoma 105, 250–260 (1996). https://doi.org/10.1007/BF02528774

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02528774

Keywords

Navigation