Skip to main content
Log in

An experimental investigation of hypervelocity flow in a conical nozzle

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

The flow in a conical nozzle is examined experimentally for a range of hypervelocity conditions in a free-piston shock tunnel. The pitot pressure levels compare reasonably well with an inviscid numerical prediction which includes a correction for the growth of the nozzle wall boundary layer. The size of the nozzle wall boundary layer seems to be well predicted by semi-empirical expressions developed for perfect gas flows, as do data from other free-piston shock tunnels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gai, S.L., Free piston shock tunnels: developments and capabilities,Prog. Aerospace Sci. 29 (1992) 1–41.

    Article  ADS  Google Scholar 

  2. Stalker, R.J., Development of a hypervelocity wind tunnel.Aeronautical J. 76 (1972) 374–384.

    Google Scholar 

  3. Stalker, R.J. and Hornung, H.G., The Australian National University free piston shock tunnel, T-3. Laboratory Report PF-5 Physics Department, Australian National University (1971).

  4. Mark, H., The interaction of a reflected shock wave with a boundary layer a boundary layer in a shock tube. NACA TM 1418 (1958).

  5. Davies, L. and Wilson, J.L., Influence of reflected shock and boundary-layer interaction on shock-tube flows.Phys. Fluids 12 (1969) Supplement I, 137–143.

    Google Scholar 

  6. Wilson, G.J., Sharma, S.P. and Gillespie, W.D., Time-dependent simulation of reflected-shock/boundary layer interaction in shock tubes. In: Brun, R. and Dumiftrescu, L.Z. (eds),Proceedings of the 19th Symposium on Shock Waves, Vol. 1, Springer-Verlag, Berlin (1993) pp. 439–444.

    Google Scholar 

  7. Sanderson, R.J., Interpretation of pressure measurements behind the reflected shock in a rectangular shock tube.AIAA J 7 (1969) 1370–1372.

    ADS  Google Scholar 

  8. Crane, K.C.A. and Stalker, R.J., Mass-spectrometric analysis of hypersonic flows.J. Phys. D: Appl. Phys. 10 (1977) 679–695.

    Article  ADS  Google Scholar 

  9. R.J. Stalker and K.C.A. Crane, Driver gas contamination in a high-enthalpy reflected shock tunnel.AIAA J. 16 (1978) 277–279.

    ADS  Google Scholar 

  10. Stalker, R.J. and Morgan, R.G., The University of Queensland free piston shock tunnel T4—Initial operation and preliminary calibration. NASA CR-181721 (1988).

  11. McIntosh, M.K., A computer program for the numerical calculation of equilibrium and perfect gas conditions in shock tunnels. Australian Defence Scienctific Service, WRE Tech Note CPD 169 (1969).

  12. Lordi, J.A., Mates, R.E. and Moselle, J.R., Computer program for the numerical solution of nonequilibrium expansions of reacting gas mixtures. NASA Computer Report 472 (1966).

  13. Pulford, D.R.N., Newman, D.S., Houwing, A.F.P. and Sandeman, R.J., Temperature measurements using Coherent Anti-Stokes Raman Scattering in a pulsed high enthalpy supersonic flow. In: Brun, R. and Chikhaoui, A.A. (eds),Proceedings of the IUTAM Symposium: Aerothermochemistry of Spacecraft and Associated Hypersonic Flows.Jouve, Paris (1994) pp. 469–474.

    Google Scholar 

  14. Stalker, R.J. and McIntosh, M.K., Hypersonic nozzle flow of air with high initial dissociation levels.J. Fluid Mech. 58 (1973) 749–761.

    Article  ADS  Google Scholar 

  15. Rein, M., Surf: A program for calculating inviscid supersonic reacting flows in nozzles. GALCIT-CalTech Technical Report FM 89-1 (1989).

  16. East, R.A., Stalker, R.J. and Baird, J.P., Measurements of heat transfer to a flat plate in a dissociated high-enthalpy laminar air flow.J. Fluid Mech. 97 (1980) 673–699.

    Article  ADS  Google Scholar 

  17. Hirschfelder, J.O., Curtiss, C.F. and Bird, R.B.,Molecular Theory of Gases and Liquids, Wiley & Sons, New York (1967).

    Google Scholar 

  18. Mallinson, S.G., Shock wave/boundary layer interaction at a compression corner in hypervelocity flows. PhD thesis, University of New South Walles (1994).

  19. Wilke, C.R., A viscosity equation for gas mixtures.J. Chem. Phys. 18 (1950) 517–519.

    Article  ADS  Google Scholar 

  20. Liepmann, H.W. and Roshko, A.,Elements of Gasdynamics. Wiley & Sons, New York (1957).

    MATH  Google Scholar 

  21. Burke, A.F. and Bird, K.D., The use of conical and contoured expansion nozzles in hypervelocity facilities. In:Advances in Hypervelocity Techniques: Proceedings of the 2nd Symposium on Hypervelocity Techniques. Plenum Press, New York (1962) pp. 373–424.

    Google Scholar 

  22. Lukasiewicz, J.,Experimental Methods of Hypersonics. Marcel Dekker, New York (1973).

    Google Scholar 

  23. Jacobs, P.A. and Stalker, R.J., Mach 4 Mach 8 axisymmetric nozzles for a high-enthalpy shock tunnel.Aeronautical J. 95 (1991) 324–334.

    Google Scholar 

  24. Hannemann, K., Krek, R. and Eitelberg, G., Latest calibration results of the HEG contoured nozzle. Paper presented at the 20th International Symposium on Shock Waves, GALCIT-CalTech, Pasadena (1995).

  25. Cohen, C.G. and Reshotko, E., Similar solutions for the compressible laminar boundary layer with heat transfer and pressure gradient. NACA Report 1293 (1956).

  26. Loth, E., Baum, J. and Löhner, R., Formation of shocks within axisymmetric nozzles.AIAA J. 30 (1992) 268–270.

    MATH  ADS  Google Scholar 

  27. Chen, F. -J., Wilkinson, S.P. and Beckwith, I.E., Görtler instability and hypersonic quiet nozzle design.J. Spacecraft 30 (1993) 170–175.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallinson, S.G., Gai, S.L. & Mudford, N.R. An experimental investigation of hypervelocity flow in a conical nozzle. Appl. Sci. Res. 57, 81–93 (1996). https://doi.org/10.1007/BF02528765

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02528765

Key words

Navigation