Ukrainian Mathematical Journal

, Volume 49, Issue 7, pp 1075–1088 | Cite as

Solutions of the Maxwell equations describing the spectrum of hydrogen

  • V. M. Simulik


We obtain a new class of solutions of the Maxwell equations describing the spectrum of hydrogen. We prove that, instead of the quantum-mechanical Dirac equation, the ordinary classical Maxwell equations can be applied to the solution of many problems in atomic and nuclear physics.


Stationary Equation Dirac Equation Maxwell Equation Radial Equation Gradient Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Sallhofer, “Elementary derivation of the Dirac equation. I,” Z Naturforsch. A., 33, 1379–1381 (1978)MathSciNetGoogle Scholar
  2. 2.
    H. Sallhofer, “Maxwell—Dirac—Isomorphism. XI.”, Z. Naturforsch. A. 41, 1087–1088 (1986).MathSciNetGoogle Scholar
  3. 3.
    H. Sallhofer, “Hydrogen in electrodynamics. II.,” Z. Naturforsch. A., 44, 167–168 (1989).Google Scholar
  4. 4.
    H. Sallhofer, “Hydrogen in electrodynamics. V,” Z. Naturforsch. A., 45, 1038–1040 (1990).Google Scholar
  5. 5.
    H. Sallhofer, “Hydrogen in electrodynamics. VI,” Z. Naturforsch. A., 45, 1361–1366 (1990).Google Scholar
  6. 6.
    A. Lakhtakia, Models and Modelers of Hydrogen, World Scientific, London (1996).Google Scholar
  7. 7.
    V. M. Simulik, “Connection between symmetry properties of the Dirac and Maxwell equations and conservation laws,” Teor. Mat. Fiz., 87, No. 4, 76–85 (1991).MathSciNetGoogle Scholar
  8. 8.
    I. Yu. Krivskii and V. M. Simulik, “Dirac equation and the representation of spin one, connection with symmetries of the Maxwell equations,” Teor. Mat. Fiz. 90, No. 3, 388–406 (1992).MathSciNetGoogle Scholar
  9. 9.
    V. M. Simulik, “Some algebraic properties of Maxwell-Dirac isomorphism,” Z. Naturforsch. A., 49, 1074–1076 (1994).Google Scholar
  10. 10.
    V. M. Simulik and I. Yu. Krivskii, “Complete collection of transformations connecting the Dirac and Maxwell equations,” Dopov. Akad. Nauk Ukr., No. 7, 54–57 (1995)MathSciNetGoogle Scholar
  11. 11.
    I. Yu. Krivskii and V. M. Simulik, “On the unitary operator connecting the Maxwell and Dirac equations,” Dopov. Akad. Nauk Ukr., No. 8. 79–85 (1996).MathSciNetGoogle Scholar
  12. 12.
    I. Yu. Krivsky and V. M. Simulik, “Unitary connection in Maxwell-Dirac isomorphism and the Clifford algebra,” Adv. Appl. Cliff Alg., 6, No. 2, 249–259 (1996).zbMATHMathSciNetGoogle Scholar
  13. 13.
    V. M. Simulik and I. Yu Krivsky, “A classical electrodynamical model of the hydrogen atom,” in: Scientific Works of IÉF' 96, Uzhgorod (1996), pp. 27–31.Google Scholar
  14. 14.
    V. M. Simulik and I. Yu. Krivsky, “An electrodynmical version of the hydrogen spectrum,” in: Proceedings of the 28 th European Group of Atomic Spectroscopy Conf. (July, 1996), Graz., Austria (1996), pp. 41–42.Google Scholar
  15. 15.
    R. Mignani, E. Recami, and M. Baldo, “About a Dirac-like equation for the photon according to Ettore Majorana,” Lett. Nuovo Cim., 11, No. 12, 572–586 (1974).CrossRefGoogle Scholar
  16. 16.
    I. Yu. Krivskii and V. M. Simulik, Foundations of Quantum Electrodynamics in Terms of Strengths [in Russian], Naukova Dumka, Kiev (1992).Google Scholar
  17. 17.
    I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products [in Russian], Nauka, Moscow (1971).Google Scholar
  18. 18.
    M. Abramowitz and I. A. Stegun (editors), Handbook of Mathematical Functions [Russian translation], Nauka, Moscow (1979).zbMATHGoogle Scholar
  19. 19.
    D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum [in Russian], Nauka, Moscow (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • V. M. Simulik

There are no affiliations available

Personalised recommendations