Ukrainian Mathematical Journal

, Volume 49, Issue 7, pp 989–1002 | Cite as

Functional law of the iterated logarithm for fields and its applications

  • B. V. Bondarev
  • G. G. Zhirnyi


For a Wiener field with an arbitrary finite number of parameters, we construct the law of the iterated logarithm in the functional form. We consider the problem for random fields of a certain type to reside within curvilinear boundaries without assuming that the Cairoli—Walsh condition is satisfied.


Random Field Stochastic Equation Iterate Logarithm Riemann Function Exponential Estimate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Imkeller, “Stochastic calculus for continuous N-parameter strong martingales,” Stoch. Processes Their Applications, 20, 1–40 (1985).MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    B. V. Bondarev and G. G. Zhirnyi, “Some properties of multiparameter random fields,” Ukr. Mat. Zh., 47, No. 12, 1609–1622 (1995).MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    I. I. Gikhman, “Two-parameter martingales,” Usp. Mat. Nauk, 37, No. 6 (228), 1–28 (1982).MATHMathSciNetGoogle Scholar
  4. 4.
    I. Fazekas, “On convergence of multiparameter strong martingales in Banach lattices,” Analysis Math., 10, 202–207 (1984).CrossRefMathSciNetGoogle Scholar
  5. 5.
    B. V. Bondarev and G. G. Jirny, “On the functional of action for the multiparameter random fields,” Rand. Oper. Stoch. Equats., 3, No. 2, 37–46 (1995).Google Scholar
  6. 6.
    V. Strassen, “An invariance principle for the law of the iterated logarithm,” Z. Wahrsheinlichkeitstheorie verw. Gebiete, 3, No. 3, 211–226 (1964).MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    A. V. Bulinskii, “A new version of the functional law of iterated logarithm,” Teor. Ver. Primen., 25, No. 3, 502–512 (1980).MathSciNetGoogle Scholar
  8. 8.
    A. V. Bulinskii, Limit Theorems for Random Processes and Fields [in Russian], Moscow University, Moscow (1981).Google Scholar
  9. 9.
    L. L. Ponomarenko, “Stochastic integrals for multiparameter Brown motion and related stochastic equations,” Teor. Ver. Mat. Statist., 7, 100–109 (1972).MathSciNetGoogle Scholar
  10. 10.
    A. V. Bitsadze, Some Classes of Partial Differential Equations [in Russian], Nauka, Moscow (1981).MATHGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • B. V. Bondarev
  • G. G. Zhirnyi

There are no affiliations available

Personalised recommendations