Skip to main content
Log in

Der Einfluß zentralnervöser Modulation auf die Qualität der Epiduralblockade

The effect of central nervous modulation on the quality of epidural blockade

  • Übersichten
  • Published:
Der Schmerz Aims and scope Submit manuscript

Abstract

Conventional clinical dosages of local anesthetics may not be sufficient to block conduction of all afferent impulses, which is important for an effective epidural sensory blockade. Further depression of the transmission of information can be accomplished by central modulating mechanisms, preventing sensory perception. Since there are interindividual differences in the quality of modulating mechanisms, standardized depression of impulse propagation by the local anesthetic is associated with a wide variation in the total depression of afferent impulses. For that reason, the results of a particular dosage of a local anesthetic will be variable regarding the amount of epidural sensory blockade perceived. A continuous epidural technique using a catheter permits the dosage to be individualized by means of additional injections. Patients with a low pain threshold require a more highly concentrated local anesthetic. The addition of opioids to the local anesthetic will permit the use of lower concentrations of the local anesthetic itself. Optimal use of diagnostic, prognostic, and therapeutic epidural blockades is possible only if the influence of modulating mechanisms is taken into account.

Zusammenfassung

Bei einer effektiven sensorischen Epiduralblockade reduziert das Lokalanästhetikum die für die Weiterleitung eines Aktionspotentials notwendigen Veränderungen in der Nervenmembran nicht bei allen Afferenzen soweit, daß das Aktionspotential blockiert wird. Eine weitere Dämpfung der Informationsübertragung kann durch modulierende Mechanismen im Zentralnervensystem erfolgen, wodurch ein sensorisches Erlebnis verhindert wird. Interindividuelle Unterschiede in der Qualität der modulierenden Mechanismen bewirken eine verschieden starke Ausbreitung der erlebten sensorischen Blockade bei gleicher Dämpfung durch das Lokalanästhetikum. Auswirkungen dieser zentralen Modulation auf die Praxis der Epiduralblockade sowie diagnostische, prognostische und therapeutische Schmerzblockaden werden diskutiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Abboud TK, Sarkis F, Hung TT, Khoo SS, Varakian L, Henriksen E, Noneihed R, Goebelsmann U (1983) Effects of epidural anesthesia during labor on maternal plasma beta-endorphin levels. Anesthesiology 59:1

    PubMed  CAS  Google Scholar 

  2. Adams JE, Hosobuchi Y, Fields HL (1974) Stimulation of internal capsule for relief of chronic pain. J Neurosurg 41:740

    PubMed  CAS  Google Scholar 

  3. Aghajanian GK, Van der Maelen LP (1982) 2-Adrenoceptor —mediated hyperpolization of locus coeruleus neurons: intracellular studies in vitro. Science 215:1394

    Article  PubMed  CAS  Google Scholar 

  4. Ahlgren EW, Stephen CR, Lloyd EAC, Mc Collum DE (1966) Diagnosis of pain with a graduated spinal block technique. JAMA 195:813

    PubMed  CAS  Google Scholar 

  5. Blume W (1927) Über die Wirkung des Morphins auf das Rükkenmark der dekapitierten Katze. Naunyn-Schmiedeberg's Arch Exp Pathol Pharmakol 119:24

    Article  Google Scholar 

  6. Bonica JJ (1953) The management of pain. Lea and Feabinger, Philadelphia

    Google Scholar 

  7. Bonica JJ (1959) Clinical applications of diagnostic and therapeutic nerve blocks. Thomas, Springfield Illinois

    Google Scholar 

  8. Bromage PR (1962) Spread of analgesic solutions in the epidural space and their site of action: a statistical study. Br J Anaesth 34:161

    PubMed  CAS  Google Scholar 

  9. Bromage PR, Joyal AC, Binney JC (1963) Local anesthetic drugs: penetration from the spinal extradural space into the neuraxis. Science 140:392

    Article  PubMed  CAS  Google Scholar 

  10. Bromage PR (1975) Mechanism of action of extradural analgesia. Br J Anaesth 47:199

    PubMed  Google Scholar 

  11. Bromage PR (1978) Epidural analgesia. Saunders, Philadelphia London Toronto

    Google Scholar 

  12. Bromage PR, Al-Fagih S, Kadiwal GH, Tamilrasan A (1987) Evaluation of bupivacaine and fentanyl apidural analgesia for extracorporeal shock wave lithotripsy. Anesthesiology 67:A226

    Article  Google Scholar 

  13. Brown AG, Kirk EJ, Martin HF (1973) Descending and segmental inhibition of transmission through the spinocervical tract. J Physiol 230:689

    PubMed  CAS  Google Scholar 

  14. Burke D, Mackenzie RA, Skuse NF, Lethlean AK (1975) Cutaneous afferent activity in median and radial nerve fascicles: a microelectrode study. J Neurol Neurosurg Psychiatry 38:855

    PubMed  CAS  Google Scholar 

  15. Burn JM, Guyer PB, Langdon L (1973) The spread of solutions injected into the epidural space: A study using epidurograms in patients with the lumbosciatic syndrome. Br J Anesth 45:338

    CAS  Google Scholar 

  16. Chiu SY, Ritchie JM (1984) On the physiological role of internodal potassium channels and the security of conduction in myelinated nerve fibers. Poc R Soc Lond (Biol) 220:415

    Article  CAS  Google Scholar 

  17. Cohen EN (1968) Distribution of local anesthetic agents in the neuraxis of the dog. Anesthesiology 29:1002

    Article  PubMed  CAS  Google Scholar 

  18. Denko CW, Aponte J, Gabriel P, Petriovic M (1982) Serum β-endorphin levels in rheumatic disorders. J Rheumatol 9:827

    PubMed  CAS  Google Scholar 

  19. de Jong RH, Cullen SC (1963) Theoretical aspects of pain: bizarre pain phenomena during low spinal anesthesia. Anesthesiology 24:628

    Article  Google Scholar 

  20. Dogliotti AM (1931) Eine neue Methode der regionären Anästhesie. Zentralbl Chir 50:3141

    Google Scholar 

  21. Duggan J, Bowler GMR, Mc Clure JH, Wildsmith JAW (1987) Factors governing the epidural spread of bupivacaine. Reg Anesth (Philadelphia) 12:47

    Google Scholar 

  22. Egan TM, Henderson G, North RA, Williams YT (1983) Noradrenaline-mediated synaptic inhibition in rat locus coeruleus neurones. J Physiol (Lond) 345:477

    CAS  Google Scholar 

  23. Fields HL, Basbaum AI (1984) Endogenous pain control mechanisms. In: Wall PD, Melzack R (eds) Pain. Churchill Livingstone, Edinburgh London Melbourne New York, p 142

    Google Scholar 

  24. Frumin MJ, Schwartz H, Bruns JJ, Brodie BB, Papper EM (1953) The appearance of procaine in the spinal fluid during peridural block in man. J Pharmacol Exp Ther 109:102

    PubMed  CAS  Google Scholar 

  25. Gebhart GF, Sandkühler J, Thalhammer JG, Zimmermann M (1984) Inhibition in spinal cord of nociceptive information by electrical stimulation and morphine microinjection at identical sites in midbrain of the cat. J Neurophysiol 51:75

    PubMed  CAS  Google Scholar 

  26. Genazzani AR, Nappi R, Facchinetti F, Micieli G, Petraglia F, Bano G, Monittola C, Savoldi F (1984) Progressive impairment of CSF β-EP levels in migraine sufferers. Pain 18:127

    Article  PubMed  CAS  Google Scholar 

  27. Gray BG, Dostrovsky JO (1985) Inhibition of feline spinal cord dorsal horn neurons following electrical stimulation of nucleus paragigantocellularis lateralis. A comparison with nucleus raphe magnus. Brain Res 348:261

    Article  PubMed  CAS  Google Scholar 

  28. Gregor M, Zimmermann M (1972) Characteristics of spinal neurones responding to cutaneous myelinated and unmyelinated fibres. J Physiol (Lond) 221:555

    CAS  Google Scholar 

  29. Hagbarth KE, Kerr DIB (1954) Central influences in spinal afferent conduction. J Neurophysiol 17:295

    PubMed  CAS  Google Scholar 

  30. Handwerker HO, Iggo A, Zimmermann M (1975) Segmental and supraspinal actions on dorsal horn neurons responding to noxious and non-noxious skin stimuli. Pain 1:147

    Article  PubMed  CAS  Google Scholar 

  31. Henry JL (1976) Effects of substance P on functionally identified units in cat spinal cord. Brain Res 114:439

    Article  PubMed  CAS  Google Scholar 

  32. Herz A, Albus K, Metys J, Schubert P, Teschemacher H (1970) On the central sites for the antinociceptive action of morphine and fentanyl. Neuropharm 9:539

    Article  CAS  Google Scholar 

  33. Hjortso NC, Lund C,Mogensen T, Bigler D, Kehlet H (1986) Epidural morphine improves pain relief and maintains sensory analgesia during continuous epidural bupivacaine after abdominal surgery. Anesth Analg 65:1033

    PubMed  CAS  Google Scholar 

  34. Hodgkin AL, Huxley AE (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (London) 117:500

    CAS  Google Scholar 

  35. Hosobuchi Y, Adams JE, Linchitz R (1977) Pain relief by electrical stimulation of central gray matter in humans and its reversal by naloxone. Science 197:183

    Article  PubMed  CAS  Google Scholar 

  36. Hökfelt T, Johanson O, Ljungdahl A, Lundberg J, Schultzberg M (1980) Peptidergic neurons. Nature 284:515

    Article  PubMed  Google Scholar 

  37. Höllt V (1983) Multiple endogenous opioid peptides. Trends Neurosci 6:24

    Article  Google Scholar 

  38. Illes P (1986) Mechanisms of receptor-mediated modulation of transmitter release in noradrenergic cholinergic and sensory neurones. Neuroscience 17:909

    Article  PubMed  CAS  Google Scholar 

  39. Kehrberger E, Lanz E, Theiss D, Heintz-Bamberg D (1985) Bupivacain 0,75% versus 0,5% zur Periduralanästhesie. Regionalanaesthesie 8:73

    CAS  Google Scholar 

  40. Landais A, Darthout N, Kong-Ky, Saint Maurice CL (1983) Association fentanyl-bupivacaine peridurale pour l'analgésic obstétricale. Cah Anesth 31:297

    Google Scholar 

  41. Leatherdale RAL (1956) Phantom limb pain associated with spinal analgesia. Anesthesia 11:249

    CAS  Google Scholar 

  42. Lembeck F (1953) Zur Frage der zentralen Übertragung afferenter Impulse. III. Mitteilung. Das Vorkommen und die Bedeutung der Substanz P in den dorsalen Wurzeln des Rückenmarks. Arch Exp Pathol Pharmakol 219:197

    CAS  Google Scholar 

  43. Lund C, Mogensen T, Hjortso N-C, Kehlet H (1985) Systemic morphine enhances spread of sensory analgesia during postoperative epidural bupivacaine infusion. Lancet II:1156

    Article  Google Scholar 

  44. Lund C, Selmar P, Hansen OB, Hjortso N-C, Kehlet H (1987) Effects of epidural bupivacaine on somatosensory evoked potentials to dermatomal stimulation. Anesth Analg 66:34

    PubMed  CAS  Google Scholar 

  45. Lund C, Hansen OB, Morgensen T, Kehlet H (1987) Effect of thoracic epidural bupivacaine on somatosensory evoked potentials after dermatomal stimulation. Anesth Analg 66:731

    PubMed  CAS  Google Scholar 

  46. Mackenzie RA, Burke D, Skuse NF, Lethlean AK (1975) Fibre function and perception during cutaneous nerve block. J Neurol Neurosurg Psychiatry 38:865

    PubMed  CAS  Google Scholar 

  47. Milon D, Benhne-Ferrer, Noury D, Reymann JM, Sauvage J, Allain H, Saint-Marc C (1982) Anesthésie péridurale pour césarienne par association bupivacaine—fentanyl. Am Rev Fr Anesth Reanim 2:273

    Article  Google Scholar 

  48. Moore DC, Bridenbaugh LD, Bagdi PA (1968) The present status of spinal (subarachnoidal) and epidural (epidural) block: a comparison of the two techniques. Anesth Analg 47:40

    PubMed  CAS  Google Scholar 

  49. Mudge AW, Leeman SE, Fischbach GD (1979) Enkephalin inhibits release of substance P from sensory neurones in culture and decreases action potential duration. Proc Natl Acad Sci USA 76:526

    Article  PubMed  CAS  Google Scholar 

  50. Müller H, Vogelsberger W, Aigner K, Herget HF, Hempelmann G (1983) Kontinuierliche peridurale Opiatapplikation mit einer implantierten Pumpe. Implantationstechnik und erste Ergebnisse. Regionalanästhesie 6:47

    Google Scholar 

  51. Nappi G, Facchinetti F, Bono G, Micieli G, Parrini D, Martignoni E, Petraglia F, Genazzini AR (1982) Plasma opioid levels in post-traumatic chronic headache and trigeminal neuralgia: maintained response to acupuncture. Headache 22:276

    Article  PubMed  CAS  Google Scholar 

  52. North RA, Williams JT (1983) Opiate activation of potassium conductance inhibits calcium action potentials in rat locus coeruleus neurones. Br J Pharmacol 80:225

    PubMed  CAS  Google Scholar 

  53. North RA (1986) Receptors on individual neurones. Neuroscience 17:899

    Article  PubMed  CAS  Google Scholar 

  54. Philips GH (1987) Epidural sufentanil in labor. Anesth Analg 66:140

    Google Scholar 

  55. Philips GH (1987) Combined epidural sufentanil and bupivacaine for labor analgesia. Reg Anesth (Philadelphia) 12:165

    Google Scholar 

  56. Ponhold H, Winkler G, Rehak PH (1987) Pain threshold and subjectively perceived epidural sensory blockade with 0,5% bupivacaine. Anesth Analg 66:629

    Article  PubMed  CAS  Google Scholar 

  57. Ponhold H, Winkler G, Rehak PH (1988) Pain duration and subjectively perceived epidural sensory blockade with bupivacaine 0.5%. Acta Anaesthesiol Scand (im Druck)

  58. Puig MM, Laorden ML, Miralles FS, Olaso MJ (1982) Endorphin levels in cerebrospinal fluid of patients with postoperative and chronic pain. Anesthesiology 57:1

    Article  PubMed  CAS  Google Scholar 

  59. Randic M, Miletic V (1977) Effect of substance P in cat dorsal horn neurones activated by noxious stimuli. Brain Res 128:164

    Article  PubMed  CAS  Google Scholar 

  60. Reynolds DV (1969) Surgery in the rat during electrical analgesia induced by focal brain stimulation. Science 164:444

    Article  PubMed  CAS  Google Scholar 

  61. Richardson DE, Akil H (1977) Pain reduction by electrical brain stimulation in man. Part 1. Acute administration in periaqueductal and periventricular sites. J Neurosurg 47:178

    PubMed  CAS  Google Scholar 

  62. Richardson DE, Akil H (1977) Pain reduction by electrical brain stimulation in man. Part 2: Chronic selfadministration in the periventricular gray matter. J Neurosurg 47:184

    Article  PubMed  CAS  Google Scholar 

  63. Ritchie JM, Ritchie BR, Greengard P (1965) The active structure of local anesthetics. J Pharmacol Exp Ther 150:152

    PubMed  CAS  Google Scholar 

  64. Rucci FS, Cardamone M, Migliori P (1985) Fentanyl and bupivacaine mixtures for extradural blockade. Br J Anaesth 57:275

    PubMed  CAS  Google Scholar 

  65. Rust M, Scontos K, Mahr W, Höllt V, Zilker TH, Hegemann M, Teschemacher H (1980) Zum Verhalten von β-Endorphin in der Perinatalperiode. Geburtshilfe Frauenheilkd 40:769

    PubMed  CAS  Google Scholar 

  66. Rust M, Egbert R, Gessler M, Johannigmann J, Kolb E, Struppler A (1983) Verminderte Schmerzempfindung während Schwangerschaft und Geburt. Arch Gynecol 235:677

    Google Scholar 

  67. Rust M, Keller M, Gessler M, Ziegelgänsberger W (1984) Endorphinerge Mechanismen bei der schwangerschaftsspezifischen Schmerzadaptation. Anaesthesist 33:452

    Google Scholar 

  68. Rust M, Keller M, Egbert R, Graeff H (1985) Endoprphinergic pain modulation during pregnancy and delivery. Arch Gynecol 237:57

    Article  Google Scholar 

  69. Sandkühler, J, Fu Q-G, Zimmermann M (1987) Spinal pathways mediating tonic or stimulation-produced descending inhibition from the periaqueductal gray or nucleus raphe magnus are separate in the cat. J Neurophysiol 58:327

    PubMed  Google Scholar 

  70. Scott J, Huskisson EC (1976) Graphic representation of pain. Pain 2:175

    Article  PubMed  CAS  Google Scholar 

  71. Seebacher J, Henry M, Galli-Douani P, Viars P (1984) Epidural opioids in labour. In: Scott DB, Mc Clure J, Wildsmith JAW (eds) Regional anesthesia 1884–1984. ICM, Södertälje p 111

    Google Scholar 

  72. Shealy CN, Mortimer JT, Reswick J (1967) Electrical inhibition of pain by stimulation of the dorsal column: preliminary clinical reports. Anesth Analg 46:489

    PubMed  CAS  Google Scholar 

  73. Smith GM, Egbert LD, Markowitz RA (1966) An experimental pain method sensitive to morphine in man: the submaximum effort tourniquet technique. J Pharmacol Exp Ther 154:324

    PubMed  CAS  Google Scholar 

  74. Starke K (1977) Regulation of noradrenaline release by presynaptic receptor systems. Rev Physiol Biochem Pharmacol 77:1

    PubMed  CAS  Google Scholar 

  75. Sternbach RA (1984) Acute versus chronic pain. In: Wall PD, Melzack R (eds) Textbook of pain. Churchill Davidson. Edinburgh London Melbourne, p 173

    Google Scholar 

  76. Strichartz GR (1973) The inhibition of sodium currents in myelinated nerve by quaternary derivatives of lidocaine. J Gen Physiol 62:37

    Article  CAS  PubMed  Google Scholar 

  77. Strichartz GR, Ritchie JM (1987) The action of local anesthetics on ion channels of excitable tissues. In: Strichartz GR (ed) Local anesthetics (Handbook of experimental pharmacology, Bd. 81). Springer, Berlin Heidelberg New York, p 21

    Google Scholar 

  78. Thomas TA, Fletcher JE, Hill RG (1982) Influence of medication, pain and progress in labor on plasma β-endorphin-like immunoreactivity. Br J Anaesth 54:401

    PubMed  CAS  Google Scholar 

  79. Usubiaga JE, Wikinski J, Wikinski R, Usabiaga LE, Pontremoli M (1964) Transfer of local anesthetics to the subarachnoid space and mechanisms of epidural block. Anesthesiology 25:752

    PubMed  CAS  Google Scholar 

  80. Wagman IH, Price DD (1969) Responses of dorsal horn cells of M. mulatta to cutaneous and sural nerve A and C fiber stimuli. J Neurophysiol 32:803

    PubMed  CAS  Google Scholar 

  81. Wall PD (1984) Mechanisms of acute and chronic pain. In: Kruger L, Liebeskind JC (eds) Neural mechanisms of pain (Advances in pain research and therapy, vol 6). Raven, New York, p 95

    Google Scholar 

  82. Wildsmith JAW (1986), Peripheral nerve and local anesthetic drugs. Br J Anaesth 58:692

    PubMed  CAS  Google Scholar 

  83. Williams JT, Egan TM, North RA (1982) Enkephalin opens potassium channels on mammalian central neurones. Nature 299:74

    Article  PubMed  CAS  Google Scholar 

  84. Wilson PR, Wedel DJ, Daube JR (1987) Evoked potential changes during epidural local anesthesia. Reg Anesth (Philadelphia) 12:98

    Google Scholar 

  85. Yaksh TL (1978) Analgetic actions of intrathecal opiates in cat and primate. Brain Res 153:205

    Article  PubMed  CAS  Google Scholar 

  86. Yaksh TL (1981) Spinal opiate analgesia: characteristics and principles of action. Pain 11:293

    Article  PubMed  CAS  Google Scholar 

  87. Yaksh TL (1982) Peripheral and central substrates involved in the rostrad transmission of nociceptive information. Pain 13:1

    Article  PubMed  CAS  Google Scholar 

  88. Yaksh TL (1983) Spinal pharmacology of pain and its modulation. Clin Neurosurg 31:291

    PubMed  CAS  Google Scholar 

  89. Yaksh TL (1987) Spinal opiates: a review of their effect on spinal function with emphasis in pain processing. Acta Anaesthesiol Scand 85:25

    Article  CAS  Google Scholar 

  90. Zenz M, Piepenbrock S, Hüsch M, Schappler-Scheek B, Neuhaus R (1981) Erfahrungen mit längerliegenden Periduralkathetern—Peridurale Morphin-Analgesie bei Karzinompatienten. Regionalanaesthesie 4:26

    Google Scholar 

  91. Zimmermann M (1979) Peripheral and central nervous mechanisms of nociception, pain and pain therapy: facts and hypotheses. In: Bonica JJ, Liebeskind JC, Albe-Fessard DG (eds) Advances in pain research and therapy, vol 3. Raven, New York, p 3

    Google Scholar 

  92. Zimmermann M (1984) Physiologie von Nozizeption und Schmerz. In: Zimmermann M, Handwerker O (Hrsg) Schmerz, Konzepte und ärztliches Handeln. Springer, Berlin Heidelberg New York, S 1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ponhold, H. Der Einfluß zentralnervöser Modulation auf die Qualität der Epiduralblockade. Schmerz 2, 73–81 (1988). https://doi.org/10.1007/BF02528678

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02528678

Navigation