Skip to main content
Log in

Körperliche Belastung, endogene Opiate und Schmerz

Physical exercise, endogenous opiates and pain regulation

  • Originalien
  • Published:
Der Schmerz Aims and scope Submit manuscript

Abstract

A series of studies with humans as well as experiments carried out on animals have shown that physical exercise leads to temporary hypoalgesia. Reduced sensitivity to pain is not only demonstrable after long-distance exercise (such as a marathon run) but also during and after intensive physical exercise on a laboratory ergometer. In a double blind study (20 mg naloxone versus placebo) experimental pain thresholds (electrical intracutaneous finger and dental pulp stimulation) and plasma hormone levels (β-endorphin, cortisol, and catecholamines) were measured in ten healthy athletic men before, during, and after physical exercise on a cycle ergometer. A significant pain threshold elevation during exercise was found for finger (Anova,p<0.004) and dental pulp stimulation (p<0.01). Hypoalgesia remained present after exercise was stopped and the initial pain threshold level was returned to approximately 60 minutes after the exercise. The subjective magnitude estimation of suprathreshold stimuli was significantly reduced (p<0.001) after exercise. Naloxone failed to affect pain thresholds and plasma β-endorphin did not correlate significantly with pain thresholds. The cause of the exercise-induced hypoalgesia is probably an activation of central pain inhibitory mechanisms by the “stimulus” of physical exercise (stimulation-induced analgesia). Central pain inhibitory systems are probably thereby activated by the stimulation of afferent nerves endings (group III and IV) in the skeletal muscle. The same trigger mechanism also plays a role as a release stimulus for hormones which are secreted in increased measure during physical exercise (catecholamines, pituitary hormones). Plasma β-endorphin is probably not directly involved in the exercise-induced hypoalgesia but is rather a “marker” for the activating of central analgesia mechanisms.

Zusammenfassung

Eine Reihe von Studien beim Menschen wie auch tierexperimentellen Untersuchungen können inzwischen zeigen, daß körperliche Belastung zu einer zeitweiligen Hypoalgesie führt. Minderempfindlichkeit gegenüber Schmerz ist dabei nicht nur nach Langstreckenbelastung nachweisbar, wie z.B. nach einem Marathonlauf, sondern auch während und nach intensiver körperlicher Ergometerbelastung im Labor. In einer eigenen Untersuchung wurden experimentell bestimmte Schmerzschwellen (elektrische Reizung intrakutan am Finger und an der Zahnpulpa) und Plasmahormone (β-Endorphin, Cortisol, Katecholamine) vor, während und nach körperlicher Belastung auf einem Fahrradergometer gemessen. Die Untersuchung erfolgte doppelblind nach 20 mg Naloxon i.v. bzw. nach Plazebo. Ein signifikanter Schmerzschwellenanstieg konnte unter körperlicher Belastung sowohl am Finger (Anova,p<0,004) als auch am Zahn (p<0,01) nachgewiesen werden. Die Schmerzschwelle blieb auch nach Abbruch der Belastung erhöht und hatte 60 min nach Belastung ihr Ausgangsniveau wieder erreicht. Auch die subjektive Einschätzung überschwelliger Schmerzstimuli auf einer visuellen Analogskala war nach Belastung signifikant erniedrigt. Naloxon hatte keinen signifikanten Einfluß auf die Schmerzschwellen, und β-Endorphin zeigte keine signifikante Korrelation mit der Schmerzschwellenerhöhung unter körperlicher Belastung. Ursache der belastungsinduzierten Hypoalgeise ist wahrscheinlich eine Aktivierung zentraler schmerzinhibitorischer Mechanismen durch den “Stimulus” körperliche Belastung (stimulationsinduzierte Analgesie). Zentrale schmerzinhibitorische Systeme werden dabei vermutlich durch die Reizung afferenter Nervenfasern (Gruppe III und IV) im Skelettmuskel aktiviert. Der gleiche Triggermechanismus spielt auch eine Rolle als Freisetzungsstimulus für Hormone, die unter körperlicher Belastung verstärkt ausgeschüttet werden (Katecholamine, Hypophysenhormone). Plasma-β-Endorphin ist wahrscheinlich nicht direkt an der belastungsinduzierten Hypoalgesie beteiligt, sondern eher “Marker” für eine Aktivierung zentraler Analgesiemechanismen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Amir S, Brown ZW, Amit Z (1980) The role of endorphins in stress: evidence and speculations. Neurosci Biobehav Rev 4:77–86

    Article  PubMed  CAS  Google Scholar 

  2. Anton F, Handwerker HO, Kreh A, Reeh PW, Walter E, Webber E (1985) Influence of acetylsalicylic and salicylic plasma levels on psychophysical measures of long standing natural pain stimuli. In: Fields HL, Dubner R, Cervero F (eds) Advances in pain research and therapy, Raven, New York, pp 781–789

    Google Scholar 

  3. Arentz T, de Meirleir K, Hollmann W (1986) Die Rolle der endogenen opioiden Peptide während Fahrradergometerarbeit. Dtsch Z Sportmed 37:210–219

    CAS  Google Scholar 

  4. Axelrod J, Reisine TD (1984) Stress hormones: their interaction and regulation. Science 224:452–459

    Article  PubMed  CAS  Google Scholar 

  5. Banks WA, Kastin AJ (1987) Saturable transport of peptides across the blood-brain barrier. Life Sci 41:1319–1338

    Article  PubMed  CAS  Google Scholar 

  6. Barta A, Yashpal K (1981) Regional redistribution of β-endorphin in rat brain: the effect of stress. Prog Neuropsychopharmacol 5:595–598

    Article  PubMed  CAS  Google Scholar 

  7. Bennett GJ, Mayer DJ (1979) Inhibition of spinal cord interneurons by narcotic microinjection and focal electrical stimulation in the periaqueductal central gray matter. Brain Res 172:243–257

    Article  PubMed  CAS  Google Scholar 

  8. Bergland RM, Page RB (1978) Can the pituitary secrete directly to the brain? Endocrinol 102:1325–1338

    CAS  Google Scholar 

  9. Birnberg NC, Lissitzky J-C, Hinman M, Herbert E (1983) Glucocorticoids regulate proopiomelanocortin gene expression in vivo at the levels of transcription and secretion. Proc Natl Acad Sci USA 80:6982–6986

    Article  PubMed  CAS  Google Scholar 

  10. Black J, Chesher GB, Starmer GA (1979) The painlessness of the long-distance runner. Med J Aust 2:522–523

    Google Scholar 

  11. Blake MJ, Stein EA, Vomachka A (1984) Effects of exercise training on brain opioid peptides and serum LM in female rats. Peptides 5:953–958

    Article  PubMed  CAS  Google Scholar 

  12. Bodnar RJ, Kelly DD, Glusman M (1978) Stress-induced analgesia: time-course of pain reflex alterations following coldwater swims. Bull Psychonom Soc 11:333–336

    Google Scholar 

  13. Borg G, Ljungren G, Ceci R (1985) The increase of perceived exertion, aches and pain in the legs, heart rate and blood lactate during exercise on a bicycle ergometer. Eur J Appl Physiol 54:343–349

    Article  CAS  Google Scholar 

  14. Bromm B, Scharein E (1983) A sensitive method to evaluate effects of analgesics in man. Methods Find Exp Clin Pharmacol 5, 8:5545–5551

    Google Scholar 

  15. Brown MR, Fisher LA (1985) Corticotropin-releasing factor: effects on the autonomic nervous system and visceral systems. Fed Proc 44:243–248

    PubMed  CAS  Google Scholar 

  16. Buono MJ, Yeager JE, Sucec AA (1987) Effect of aerobic training on plasma ACTH response to exercise. J Appl Physiol 63:2499–2501

    PubMed  CAS  Google Scholar 

  17. Cannon JT, Prieto GJ, Lee A, Liebeskind JC (1982) Evidents for opioid and non-opioid forms of stimulation-produced analgesia in the rat. Brain Res 243:315–321

    Article  PubMed  CAS  Google Scholar 

  18. Carr DB, Bullen BA, Skrinar GS, Arnold MA, Rosenblatt M, Beitins IZ, Martin JB, McArthur JW (1981), Physical conditioning facilitates the exercise-induced secretion of beta-endorphin and beta-lipotropin in women. N Engl J Med 305:560–563

    Article  PubMed  CAS  Google Scholar 

  19. Carr DB, Bergland R, Hamilton A, Blume H, Kasting N, Arnold M, Martin JB, Rosenblatt M (1982) Endotoxin-stimulated opioid peptide secretion: two secretory pools and feedback control in vivo. Science 217:845–848

    Article  PubMed  CAS  Google Scholar 

  20. Carr DB, Sheehan DV, Surman OS, Coleman JH, Greenblatt DJ, Heninger GR, Jones KJ, Levine PH, Watkins WD (1986) Neuroendocrine correlates of lactate-induced anxiety and their response to chronic alprazolam therapy. Am J Psychiatry 143:483–494

    PubMed  CAS  Google Scholar 

  21. Cheung AL, Goldstein A (1976) Failure of hypophysectomy to alter brain content of opioid peptides. Life Sci 19:1005–1008

    Article  PubMed  CAS  Google Scholar 

  22. Clark WC, Yang JC (1983) Application of sensory decision theory to problems in laboratory and clinical pain. In: Melzack R (ed) Pain measurement and assessment

  23. Colt EWD, Spyropoulos E (1979) Running and stress factures. Br Med J 2:706

    PubMed  CAS  Google Scholar 

  24. Colt EWD (1980) Letter to the editor: coronary-artery disease in marathon runners. New Engl J Med 302:57

    Article  PubMed  CAS  Google Scholar 

  25. Colt EWD, Wardlaw SL, Frantz AG (1981) The effect of running on plasma β-endorphin. Life Sci 28:1637–1640

    Article  PubMed  CAS  Google Scholar 

  26. Coplan NL, Gleim GW, Nicholas JA (1988) Exercise and sudden cardiac death. Am Heart J 115:207–212

    Article  PubMed  CAS  Google Scholar 

  27. Dager SR, Cowley DS, Dorsa DM, Dunner DL (1989) Plasma β-endorphin response to lactate infusion. Biol Psychiatry 25:243–245

    Article  PubMed  CAS  Google Scholar 

  28. Dale G, Fleetwood JA, Weddell A, Ellis RD (1987) β-endorphin: a factor in “fun run” collapse? Br Med J 294:1004

    CAS  Google Scholar 

  29. Davies CTM, Few JD, Foster KG, Sargeant AJ (1974) Plasma catecholamine concentration during dynamic exercise involving different muscle groups. Eur J Appl Physiol 32:195–206

    Article  CAS  Google Scholar 

  30. Deuss U, Allolio B, Kaulen D, Fischer H, Winkelmann W (1985) Effects of high-dose and low-dose naloxone on plasma ACTH in patients with ACTH hypersecretion. Clin Endocrinol 22:273–279

    CAS  Google Scholar 

  31. Donevan RH, Andrew GM (1987) Plasma β-endorphin immunoreactivity during graded cycle ergometry Med Sci Sports Exerc 19,3:229–232

    PubMed  CAS  Google Scholar 

  32. Droste C, Meyer-Blankenburg H, Greenlee MW, Roskamm H (1988) Effect of physical exercise on pain thresholds and plasma beta-endorphins in patients with silent and symptomatic myocardial ischemia. Eur Heart J 9:25–33

    PubMed  Google Scholar 

  33. Droste C (1990) Influence of opiate systems in pain transmission during angina pectoris. Z Kardiol 79:31–43

    PubMed  CAS  Google Scholar 

  34. Droste C, Roskamm H (1990) Pain perception and endogenous pain modulation in angina pectoris. Adv Cardiol 37:142–164

    PubMed  CAS  Google Scholar 

  35. Droste C, Greenlee MW, Schreck M, Roskamm H (1991) Experimental pain thresholds and plasma beta-endorphin levels during exercise. Med Sci Sports Exerc 23,3:334–342

    PubMed  CAS  Google Scholar 

  36. Duggan AW, Morton CR (1983) Periaqueductal grey stimulation: an association between selective inhibition of dorsal horn neurones and changes in peripheral circulation. Pain 15:237–248

    Article  PubMed  CAS  Google Scholar 

  37. Ellison K, Freischlag J (1975) Pain tolerance, arousal and personality relationships of athlets and non-athlets. Res Quaterly 46:250–255

    CAS  Google Scholar 

  38. Farrell PA (1985) Exercise and endorphins—male responses. Med Sci Sports Exerc 17:89–93

    PubMed  CAS  Google Scholar 

  39. Farrell PA, Gustafson AB, Morgan WP, Pert CB (1987) Enkephalins, catecholamines, and psychological mood alterations: effects of prolonged exercise. Med Sci Sports Exerc 19:347–353

    PubMed  CAS  Google Scholar 

  40. Few JD, Cashmore GC, Turton G (1980) Adrenocortical response to one-leg and two-leg exercise on a bicycle ergometer. Eur J Appl Physiol 44:167–174

    Article  CAS  Google Scholar 

  41. Fields HL (1984) Neurophysiology of pain and pain modulation. Am J Med 78:2–8

    Google Scholar 

  42. Fordyce W, McMahon R, Rainwater G, Jackins S, Questad K, Murphy T, De Lateur B (1981) Pain complain exercise performance relationship in chronic pain. Pain 10:311–321

    Article  PubMed  CAS  Google Scholar 

  43. Fraioli F, Moretti C, Paolucci D, Alicicco E, Crescenzi F, Fortunio G (1980) Physical exercise stimulates marked concomitant release of β-endorphin and ACTH in peripheral blood in man. Experientia 36:987–989

    Article  PubMed  CAS  Google Scholar 

  44. Galbo H, Kjaer M, Secher NH (1987) Cardiovascular, ventilatory, and catecholamine responses to maximal dynamic exercise in partially curarized man. J Physiol (Lond) 389: 557–568.

    CAS  Google Scholar 

  45. Gerner RH, Sharp B, Catlin DH (1982) Peripherally administered β-endorphin increases cerebrospinal fluid endorphin-immunoreactivity. J Clin Endocrinol Metab 55:358–360

    PubMed  CAS  Google Scholar 

  46. Gillies G, Puri A, Hodgkinson S, Lowry PJ (1984) Involvement of rat corticotropin-releasing factor-41-related peptide and vasopressin in adrenocorticotropin-releasing activity from superfused rat hypothalami in vitro. J Endocrinol 103:25–29

    PubMed  CAS  Google Scholar 

  47. Gillies GE, Linton EA, Lowry PJ (1982) Corticotropin-releasing activity of the new CRF is potential several times by vasopressin. Nature 229:335–357

    Google Scholar 

  48. Goldfarb AH, Hatfield BD, Sforzo GA, Flynn MG (1987) Serum β-endorphin levels during a graded exercise test to exhaustion. Med Sci Sports Exerc 19:78–82

    PubMed  CAS  Google Scholar 

  49. Gondola JC, Tuchman BW (1982) Psychological mood state in “average” marathon runners. Percept Mot Skill 55:1295–1300

    Google Scholar 

  50. Grossman A (1984) Endorphins and exercise. Clin Cardiol 7:255–260

    PubMed  CAS  Google Scholar 

  51. Guillemin R, Vargo T, Rossier J, Minick S, Ling N, Rivier C, Vale W, Bloom F (1977) Beta-endorphin and adrenocorticotropin are secreted concomitantly by the pituitary gland. Science 197:1367–1369

    Article  PubMed  CAS  Google Scholar 

  52. Haier RJ, Quaid K, Mills JSC (1981) Naloxone alters pain perception after jogging (letter). Psychiatry Res 5:231–232

    Article  PubMed  CAS  Google Scholar 

  53. Hargreaves KM, Mueller GP, Dubner R, Goldstein D, Dionne RA (1987) Corticotropin-releasing factor (CRF) produces analgesia in humans and rats. Brain Res 422:154–157

    Article  PubMed  CAS  Google Scholar 

  54. Hargreaves KM, Schmidt EA, Mueller GP, Dionne RA (1987) Dexamethasone alters plasma levels of beta-endorphin and post-operative pain. Clin Pharmacol Ther 42:601–606

    Article  PubMed  CAS  Google Scholar 

  55. Hargreaves KM, Dubner R, Joris J (1988) Peripheral actions of opiates in the blockade of carrageenan-induced inflammation. In: Dubner R, Gebart GF, Bond MR (eds) Proceedings of the Vth World Congress on Pain. Elsevier, pp 55–60

  56. Hayes RL, Katayama Y (1986) Range of environment stimuli producing nociceptive suppression: implications for neural mechanisms. In: Kelly DD (ed) Stress-induced analgesia. Ann NY Acad Sci 467:1–13

    PubMed  CAS  Google Scholar 

  57. HoffmannP, Terenius L, Thorén P (1990) Cerebrospinal fluid immunoreactive beta-endorphin concentration is increased by long-lasting voluntary exercise in the spontaneously hypertensive rat. Regul Pept 28:233–239

    Article  PubMed  CAS  Google Scholar 

  58. Holsboer F (1988) Implications of altered limbic-hypothalamic-pituitary-adrenocortical (LHPA)-function for neurobiology of depression. In: Van den Hoofdakker RH (ed) Biological measures. Their theoretical and diagnostic value in psychiatry. Acta Psychiatr Scand [Suppl 341] 77:72–111

    Google Scholar 

  59. Houghten RA, Swann RW, Li CH (1980) β-endorphin: stability, clearance behaviour, and entry into the central nervous system after intravenous injection of the tritiated peptide in rats and rabbits. Proc Natl Acad Sci USA 77:4588–4591

    Article  PubMed  CAS  Google Scholar 

  60. Howelett TA, Tomlin S, Hgahfoong L, Rees LH, Bullen BA, Skrinar GS, McArthur JW (1984) Release of β-endorphin and met-enkephalin during exercise in normal women: response to training. Br Med J 288:1950–1952

    Google Scholar 

  61. Janal MN, Colt EWD, Clark WC, Glusman M (1984) Pain sensitivity, mood and plasma endocrine levels in man following long-distance running: effects of naloxone. Pain 19:13–25

    Article  PubMed  CAS  Google Scholar 

  62. Kagan DM, Squires RL (1985) Addictive aspects of physical exercise. J Sports Med 25:227–237

    CAS  Google Scholar 

  63. Kastian AJ, Olson RD, Schally AV, Coy DH (1979) CNS effects of peripherally administered brain peptides. Life Sci 25:401–414

    Article  Google Scholar 

  64. Kemppainen P, Pertovaara A, Huopaniemi T, Johansson G, Karonen SL (1985) Modification of dental pain and cutaneous thermal sensitivity by physical exercise in man. Brain Res 360:33–40

    Article  PubMed  CAS  Google Scholar 

  65. Kemppainen P, Paalasmaa P, Pertovaara A, Alila A, Johansson G (1990) Dexamethasone attenuates exercise-induced dental analgesia in man. Brain Res 519:329–332

    Article  PubMed  CAS  Google Scholar 

  66. Kjaer M (1989) Epinephrine and some other hormonal responses to exercise in man: with special reference to physical training. Int J Sports Med 10:2–15

    PubMed  CAS  Google Scholar 

  67. Kjaer M, Secher NH, Bach FW, Galbo H (1987) Role of motor center activity for hormonal changes and substrate mobilization in exercising man. Am J Physiol 253,22:R 687-R 695

    CAS  Google Scholar 

  68. Kjaer M, Bangsbo J, Lortie G, Galbo H (1988) Hormonal response to exercise in man: influence of hypoxia and physical training. Am J Physiol 254,23:R 197-R 203

    CAS  Google Scholar 

  69. Kjaer M, Secher NH, Bach FW, Sheikh S, Galbo H (1989) Hormonal and metabolic responses to exercise in humans: effect of sensory nervous blockade. Am J Physiol 255:E 95-E 101

    Google Scholar 

  70. Kniffki KD, Mense S, Schmidt RF (1981) Muscle receptors with fine afferent fibers which may evoke circulatory reflexes. Circ Res [Suppl I] 48:25–31

    Google Scholar 

  71. Kramer RE, Simpson ER, Waterman MR (1983) Induction of 11a-hydroxylase by corticotropin in primat cultures of bovine adrenocortical cells. J Biol Chem 258:3000–3005

    PubMed  CAS  Google Scholar 

  72. Kraemer WJ, Fleck SJ, Callister R et al. (1989) Training responses of plasma beta-endorphin, adrenocorticotropin, and cortisol. Med Sci Sports Exerc 21:146–153

    PubMed  CAS  Google Scholar 

  73. Kraemer WJ, Patton JF, Knuttgen HG, Marchitelli LJ, Cruthirds C, Damokosh A, Harman E, Frykman P, Dziados JE (1989) Hypothalamic-pituitary-adrenal responses to short-duration high-intensity cycle exercise. J Appl Physiol 66:161–166

    Article  PubMed  CAS  Google Scholar 

  74. Lamberts SWJ, Verleun T, Oosterom R, de Jong F, Hackeng WHL (1984) Corticotropin-releasing factor (ovine) and vasopressin exert a synergistic effect on adrenocorticotropin release in man. J Clin Endocrinol Metab 58:298–303

    PubMed  CAS  Google Scholar 

  75. Langenfeld ME, Hart LS, Kao PC (1987) Plasma β-endorphin responses to one-hour bicycling and running at 60% VO2-max. Med Sci Sports Exerc 19:83–86

    PubMed  CAS  Google Scholar 

  76. Lewis JW, Cannon JT, Liebeskind JC (1980) Opioid and nonopioid mechanisms of stress analgesia. Science 208:623–625

    Article  PubMed  CAS  Google Scholar 

  77. Lewis SF, Snell PG, Taylor WF, Hamra M, Graham RM, Pettinger WA, Blomquist CG (1985) Role of muscle mass and mode of contraction in circulatory responses to exercise. J Appl Physiol 58:146–151

    Article  PubMed  CAS  Google Scholar 

  78. Lieberman HR, Pentland AP (1982) Microcomputer-based estimation of psychophysical thresholds: the best PEST. Behav Res Meth Instrum 14:21–25

    Google Scholar 

  79. LiebeskindJC, Guibaud G, Besson JM, Oliveras J-L (1973) Analgesia from electrical stimulation of the periaqueductal gray matter in the cat: behavioural observations and inhibitory effects on spinal cord interneurons. Brain Res 50:441–446

    Article  PubMed  CAS  Google Scholar 

  80. Meirleir K de, Naaktgeboren N, Steirteghem A van, Gorus F, Olbrecht J, Block P (1986) Beta-endorphin and ACTH levels in peripheral blood during and after aerobic and anaerobic exercise. Eur J Appl Physiol 55:5–8

    Google Scholar 

  81. Meisenberg G, Simmons WH (1983) Peptides and the blood-brain barrier. Life Sci 32:2611–2623

    Article  PubMed  CAS  Google Scholar 

  82. Mense S (1986) Slowly conducting afferent fibers from deep tissues: neurobiological properties and central nervous actions. In: Autrum H, Ottoson D (eds) Progress in sensory physiology 6. Springer, Berlin Heidelberg New York, pp 139–219

    Google Scholar 

  83. Metzger JM, Stein EA (1984) Beta-endorphin and sprint training. Life Sci 34:1541–1547

    Article  PubMed  CAS  Google Scholar 

  84. Micco DJ, McEwen BS (1980) Glucocorticoids, the hippocampus, and behaviour: interactive relation between task activation and steroid hormone binding specificity. J Comp Physiol Psychol 94:624–633

    Article  PubMed  CAS  Google Scholar 

  85. Millan MJ, Przewlocki R, Jerlicz M, Gramsch CH, Höllt V, Herz A (1981) Stress-induced release of brain and pituitary β-endorphin: major role of endorphins in generation of hyperthermia, not analgesia. Brain Res 208:325–338

    Article  PubMed  CAS  Google Scholar 

  86. Morgan WP (1985) Affective beneficience of vigorous physical activity. Med Sci Sports Exerc 17:94–100

    PubMed  CAS  Google Scholar 

  87. Nakao K, Nakai Y, Oki S, Horii K, Imura H (1978) Presence of immunoreactive β-endorphin in normal human plasma: a concomitant release of β-endorphin with adrenocorticotropin after metyrapone administration. J Clin Invest 62:1395–1398

    Article  PubMed  CAS  Google Scholar 

  88. Nowlin TB (1974) The relationship between experimental pain tolerance and personality traits among four athletic groups. Dissertation Abstracts International 35:874–875

    Google Scholar 

  89. Olausson B, Rydenhag B, Eriksson E, Ellmarker L, Shyu BC, Andersson SA (1984) Naloxone effect on dental pain threshold after muscle exercise and low-frequency TNS, a comparative study in human. Pain [Suppl 2]:S 427

    Article  Google Scholar 

  90. Olausson B, Eriksson E, Ellmarker L, Rydenhag B, Shyu B-C, Andersson SA (1986) Effects of naloxone on dental pain threshold follwoing muscle exercise and low frequency transcutaneous nerve stimulation: a comparative study in man. Acta Physiol Scand 126:299–305

    Article  PubMed  CAS  Google Scholar 

  91. Oliver C, Mical RS, Porter JS (1977) Hypothalamic-pituitary vasculature: evidence for retrograde blood flow in the pituitary stalk. Endocrinol 101:598–604

    Article  CAS  Google Scholar 

  92. Page RB, Bergland RM (1977) The neurophyophyseal capillary bed. I. Anatomy and arterial supply. Am J Anat 148:345–348

    Article  PubMed  CAS  Google Scholar 

  93. Pertovaara A, Huopaniemi T, Virtanen A, Johansson G (1984) The influence of exercise on dental pain thresholds and the release of stress hormones. Physiol Behav 33 (6):923–926

    Article  PubMed  CAS  Google Scholar 

  94. Price DD (1984) Roles of psychophysics, neuroscience, and experiential analysis in the study of pain. In: Kruger L, Liebeskind JC (eds) Advances in pain research 6. Raven, New York, pp 341–355

    Google Scholar 

  95. Radosevich PM, Nash JA, Lacy DB, O'Donovan C, Williams PE, Abumrad NN (1989) Effects of low- and high-intensity exercise on plasma and cerebrospinal fluid levels of ir-β-endorphin, ACTH, cortisol, norepinephrine and glucose in the conscious dog. Brain Res 498:89–98

    Article  PubMed  CAS  Google Scholar 

  96. Rahkila P, Hakala E, Alen M, Salminen K, Laatikainen T (1988) β-endorphin and corticotropin release is dependent of a threshold intensity of running in male endurance athletes. Life Sci 43:551–558

    Article  PubMed  CAS  Google Scholar 

  97. Reeh PW, David E (1981) Objektive Algesimetrie mit dem evozierten Potential. In: Struppler A, Geßler M (Hrsg) Schmerzforschung, Schmerzmessung, Brustschmerz. Springer, Berlin Heidelberg New York, S 159–164

    Google Scholar 

  98. Reisine T, Affolter M-U, Rougon G, Barbet J (1986) New insights in the molecular mechanisms of stress. Trends Neurosci 9:574–579

    Article  CAS  Google Scholar 

  99. Rivier C, Rivier J, Vale W (1982) Inhibition of adrenocorticotropic hormone secretion in the rat by immunoneutralization of corticotropin-releasing factor. Science 218:377–379

    Article  PubMed  CAS  Google Scholar 

  100. Robbins SE, Gouw GJ, Hanna AM (1989) Running-related injury prevention through innate impact-moderating behavior. Med Sci Sports Exerc 21:130–139

    PubMed  CAS  Google Scholar 

  101. Rodgers RJ, Randall JI (1988) Environmentally induced analgesia: situational factors, mechanisms and significance. In: Rodgers RJ, Cooper SJ (eds) Endorphins, opiates and behavioural processes. Wiley & Sons, pp 107–142

  102. Rossier J, French ED, Rivier C, Ling N, Guillemin R, Bloom FE (1977) Foot-shock induced stress increases β-endorphin levels in rat blood but not brain. Nature 270:618–620

    Article  PubMed  CAS  Google Scholar 

  103. Ryan DE, Foster R (1967) Athletic participation and perceptual augmentation and reduction. J Personal Social Psychol 6:472–476

    Article  CAS  Google Scholar 

  104. Sapolsky RM, Krey LC, McEwen BS (1984) Glucocorticoid-sensitive hippocampal neurons are involved in terminating the adrenocortical stress response. Proc Natl Acad Sci USA 81:6174–6177

    Article  PubMed  CAS  Google Scholar 

  105. Scott V, Gijsbers K (1981) Pain perception in competitive swimmers. Brit Med J 283:91–93

    Article  CAS  Google Scholar 

  106. Selye H (1950). “Stress”. Acta, Montreal, p 37; 307

    Google Scholar 

  107. Sforzo GA (1988) Opioids and exercise. An update. Sports Med 7:109–124

    Google Scholar 

  108. Shyu BC, Andersson SA, Thorén P (1982) Endorphin mediated increase in pain threshold induced by long-lasting exercise in rats. Life Sci 30:833–840

    Article  PubMed  CAS  Google Scholar 

  109. Siscovick DS, Weiss NS, Fletcher RH, Lasky T (1984) The incidence of primary cardiac arrest during vigorous exercise. N Engl J Med 311:874–877

    Article  PubMed  CAS  Google Scholar 

  110. Sjölund BH, Eriksson MBE (1979) The influence of naloxone on analgesia produced by peripheral conditioning stimulation. Brain Res 173:295–301

    Article  PubMed  Google Scholar 

  111. Stein C, Millan M, Shippenberg T, Peter K, Herz A (1989) Peripheral opioid receptors mediating antinociception in inflammation: evidence for involvement of mu, delta and kappa receptors. J Pharmacol Exp Therap 248:1269–1275

    CAS  Google Scholar 

  112. Summers JJ, Machin VJ, Sargent GI (1983) Psychosocial factors related to marathon running. J Sport Psychol 5:314–331

    Google Scholar 

  113. Sutton JR (1977) Effect of acute hypoxia on the hormonal response to exercise. J Appl Physiol 41:587–592

    Google Scholar 

  114. Taché Y, Morley JE, Brown MR (eds) (1989) Neuropeptides and stress. Hans Selye Symposia on neuroendocrinology. Springer, Berlin Heidelberg New York

    Google Scholar 

  115. Terman GW, Liebeskind JC (1985) Relation of stress-induced analgesia to stimulation-produced analgesia. Ann NY Acad Sci 467:300–308

    Google Scholar 

  116. Thompson PD, Funk EJ, Carleton RA, Sturner WQ (1982) Incidence of death during jogging in Rhode Island from 1975 through 1980. JAMA 247:2535–2538

    Article  PubMed  CAS  Google Scholar 

  117. Thorén P, Floras JS, Hoffmann P, Seals DR (1990) Endorphins and exercise: physiological mechanisms and clinical implications. Med Sci Sports Exerc 22:417–428

    PubMed  Google Scholar 

  118. Vale W, Spiess J, Rivier C, Rivier J (1981) Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of croticotropin and β-endorphin. Science 213:1394–1397

    Article  PubMed  CAS  Google Scholar 

  119. Volavka J, Cho D, Mallya A (1979) Naloxone increases ACTH and cortisol levels in man. N Engl J Med 5:1056–1057

    Google Scholar 

  120. Willer JC, Albe-Fessard D (1980) Electrophysiological evidence for a release of endogenous opiates in stress-induced “analgesia” in man. Brain Res 198:419–426

    Article  PubMed  CAS  Google Scholar 

  121. Willer JC, Dehen H, Cambier J (1981) Stress-induced analgesia in humans: endogenous opioids and naloxone-reversible depression of pain reflexes. Science 212:689–691

    Article  PubMed  CAS  Google Scholar 

  122. Willer JC, Sheng-Shu L, Bertagna X, Girard F (1984) Pituitary beta-endorphin not involved in pain control in some pathophysiological conditions. Lancet 2:295–296

    Article  PubMed  CAS  Google Scholar 

  123. Willis WD (1985) Central nervous system mechanisms for pain modulation. Appl Neurophysiol 48:153–165

    PubMed  Google Scholar 

  124. Willow M, Carmody J, Carroll P (1980) The effects of swimming in mice on pain perception and sleeping time in response to hypnotic drugs. Life Sci 26:219–224

    Article  PubMed  CAS  Google Scholar 

  125. Yates A, Leehey K, Shisslak CM (1983) Running—an analogue of anorexia? N Engl J Med 308:251–255

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Droste, C. Körperliche Belastung, endogene Opiate und Schmerz. Schmerz 5, 138–147 (1991). https://doi.org/10.1007/BF02528099

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02528099

Navigation