Neurochemical Research

, Volume 21, Issue 5, pp 629–636 | Cite as

Inhibition of neuronal cyclin-dependent kinase-5 by staurosporine and purine analogs is independent of activation by munc-18

  • Veeranna
  • K. T. Shetty
  • N. Amin
  • P. Grant
  • R. W. Albers
  • H. C. Pant
Original Articles

Abstract

Neuronal cdk5 can phosphorylate certain lys-ser-pro (KSP) motifs of neurofilaments and tau protein in the nervous system. We have immunoprecipitated the cdk5 from rat brain using a polyclonal antibody raised against the C-terminus of cdk5. The immunoprecipitate has phosphorylated a KSPXK peptide analog of NF-H, as well as histone H1 and a bacterially expressed rat NF-H protein. The kinase activity was inhibited by staurosporine, isopentanyladenine and olomoucine in a dose dependent manner. Kinetic studies indicated Ki values of 39 nM, 38 μM and 8 μM, respectively for staurosporine, isopentanyladenine and olomoucine. The inhibition by staurosporine was non-competitive with respect to phosphoryl acceptor substrates. Western blot analysis of the immunoprecipitate showed both cdk5 and p67 (munc-18), a putative regulator molecule of the kinase. Addition of p67 fusion protein enhanced the kinase activity of the immunoprecipitate by 60% above the basal activity. P67 elevated Ki values for both staurosporine and olomoucine. The degree of inhibition at high concentrations of these inhibitors was unaltered by exogenous p67 indicating a lack of competitive interactions with p67. The high affinity of staurosporine for cdk5 suggests that cdk5 may be one of the targets for the neurotropic effect of staurosporine.

Key Words

cdk5 staurosporine phosphorylation p67 (Munc-18) neurofilament 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lew, J., Beaudette, K., Litwin, C.M.E., and Wang, J.H., 1992. Purification and characterization of a novel proline directed protein kinase from bovine brain. J. Biol. Chem. 267:13383–1338.PubMedGoogle Scholar
  2. 2.
    Shetty, K.T., Link, W.T., and Pant, H.C. 1993. cdc2-like kinase from rat spinal cord specifically phosphorylates KSPXK motifs in neurofilament proteins: Isolation and characterization. Proc. Natl. Acad. Sci. USA 90:6844–6848.PubMedCrossRefGoogle Scholar
  3. 3.
    Paudel, H.K., Lew, J., Ali, Z., and Wang, J.H. 1993. Brain proline directed kinase phosphorylates tau on sites that are abnormally phosphorylated in tau associated with Alzheimers paired helical filaments. J. Biol. Chem. 268:23512–23518.PubMedGoogle Scholar
  4. 4.
    Tsai, L. H., Takahashi, T., Caviness, V. S. Jr., and Harlow, E. 1993. Activity and expression pattern of cyclin dependent kinase5 in the embryonic mouse nervous system. Development 119:1029–1040.PubMedGoogle Scholar
  5. 5.
    Ishiguro, K., Kobayashi, S., Omori, A., Takamatsu, M., Yonekura, S., Anzai, K., Imahori, K., and Uchida, T. 1994. Identification of the 23 kDa subunit of Tau protein kinase II as a putative activator of cdk5 in bovine brain. FEBS Lett. 432:203–208.CrossRefGoogle Scholar
  6. 6.
    Lew, J., Huang, Q.-Q., QI, Z., Winkfein, R. J., Aebersold, R., Hunt, T., and Wang, J. H. 1994. A brain specific activator of cyclin dependent kinase5. Nature 371:423–426.PubMedCrossRefGoogle Scholar
  7. 7.
    Tsai, L. H., Delalle I., Caviness V. S. Jr., Chae, T., and Harlow, E. 1994. p35 is a neural specific subunut of cyclin dependent kinase5. Nature 371:419–423.PubMedCrossRefGoogle Scholar
  8. 8.
    Shetty, K. T., Kaech, S., Link W. T., Jaffe, H., Flores, C. M., Wray, S., Pant, H. C., and Beushausen, S. 1995. Molecular characterization of neuronal specific protein that stimulates the activity of neuronal cdk5. J. Neurochem. 64:1988–1995.PubMedCrossRefGoogle Scholar
  9. 9.
    Hunter, T., and Pines, J. 1994. Cyclins and cancer II: Cyclin D and CDK inhibitors come of age. Cell 79:573–582.PubMedCrossRefGoogle Scholar
  10. 10.
    Peter, M., and Herskowitz, I. 1994. Joining the complex: Cyclin dependent kinase inhibitory proteins and the cell cycle. Cell 79: 181–184.PubMedCrossRefGoogle Scholar
  11. 11.
    Hosoi, T., Uchiyama, M., Okumura, E., Saito, T., Ishiguro, K., Uchida, T., Okuyama, A., Kishimoto, T., and Hisanaga, S. 1995. Evidence for cdk5 as a major activity phosphorylating tau protein in porcine brain extract. J. Biochem. 117:741–749.PubMedGoogle Scholar
  12. 12.
    Vesely, J., Havlicek, L., Strnad, M., Blow, J. J., Donella-Deana, A., Pinna, L., Letham, D. S., Kato, J., Detivaud, I., Leclerc, S., and Meijer, L. 1994. Inhibition of cyclin dependent kinases by purine analogues. Eur. J. Biochem. 224:771–786.PubMedCrossRefGoogle Scholar
  13. 13.
    Ruegg, U. T., and Burgess, G. M. 1989. Staurosporine, K-25 and UCN-01: Potent but nonspecific inhibitors of protein kinases. TIPS. 10:218–220.PubMedGoogle Scholar
  14. 14.
    Budworth, J., and Gesche, A. 1995. Differential inhibition of cytosolic and membrane derived protein kinase C activity by staurosporine and other kinase inhibitors. FEBS Lett. 362:139–142.PubMedCrossRefGoogle Scholar
  15. 15.
    Rasouly, D., Rahamim, E., Lester, Y., Matsuda, Y., and Lazarovici, P. 1992. Staurosporine induced neurite outgrouth in PC12 cells is independent of protein kinase C inhibition. Mol. Pharmacol. 42:35–43.PubMedGoogle Scholar
  16. 16.
    Spacey, G. D., Bonse, R. W., Randoll, R. W., and Gardall, L. G. 1990. Selectivity of protein kinase inhibitors in human intact platelets. Cell. Signal. 2:329–338.PubMedCrossRefGoogle Scholar
  17. 17.
    Tamaoki, T. 1991. Use and specificity of staurosporine, UCN-01, and calphostin C as protein kinase inhibitors. Meth. Enzymol. 201:340–347.PubMedCrossRefGoogle Scholar
  18. 18.
    Verme, T. B., Velarde, R. T., Cunnigham, R. M., and Hootman, S. R. 1989. Effects of staurosporine on protein kinase C and amylase secretion from pancreatic acini. Am. J. Physiol. 257:G548–553.PubMedGoogle Scholar
  19. 19.
    Tamaoki, T., Nomoto, H., Takahashi, I., Kato, Y., Morimoto, M., and Tomita, F. 1986. Staurosporine, a potent inhibitor of phospholipid Ca2+ dependent protein kinase. Biochem. Biophys. Res. Commun. 135:397–402.PubMedCrossRefGoogle Scholar
  20. 20.
    Gold, M. R., Sanghera, J. S., Stewart, J., and Pelech, S. L. 1992. Selective activation of p42 mitogen activated protein, MAP kinase in murine B lymphoma cell lines by membrane immunoglobulin cross linking. Evidence for protein kinase C independent and dependent mechanisms of activation. Biochem. J. 287:269–276.PubMedGoogle Scholar
  21. 21.
    Fujita-Yamaguchi, Y., and Kathuria, S. 1988. Characterization of receptor tyrosine specific kinases by the use of inhibitors. Staurosporine is a 100 times more potent inhibitor of insulin receptor than IGF-receptor. Biochem. Biophys. Res. Commun. 157:955–962.PubMedCrossRefGoogle Scholar
  22. 22.
    Ohmichi, M., Decker, S. J., Pang, L., and Saltiel, A. R. 1992. Inhibition of the cellular actions of nerve growth factor by staurosporine and K252A results from the attenuation of the trk tyrosine kinase. Biochemistry 31:4034–4039.PubMedCrossRefGoogle Scholar
  23. 23.
    Nakano, H., Kobayashi, E., Takahashi, I., Tamaoki, T., Kuzuu, Y., and Iba, H. 1987. Staurosporine inhibits tyrosine specific protein kinase activity of Rous sarcoma virus transforming protein P60. J. Antibiotics XL:706–708.Google Scholar
  24. 24.
    Yanagihara, N., Tachikawa, E., Izumi, F., Yasugawa, S., Yamamoto, H., and Miyamoto, E. 1991. Staurosporine: An effective inhibitor of Ca2+/Calmodulin dependent protein kinase II. J. Neurochem. 56:294–298.PubMedCrossRefGoogle Scholar
  25. 25.
    Rialet, V., and Meijer, L. 1991. A new screening test for antimitotic compounds using the universal M phase specific protein kinase, p34cdc2/cyclin Bcdc13, affinity immobilized on p13suc1-coated microtitration plates. Cancer Res. 11:1581–1590.Google Scholar
  26. 26.
    Gadbois, D. M., Hamaguchi, J. R., Swank, R. A., and Bradbury, E. M., 1992. Staurosporine is a potent inhibitor of P34cdc2 and p34cdc2 like kinases. Biochem. Biophys. Res. Commun. 184:80–85.PubMedCrossRefGoogle Scholar
  27. 27.
    Kocher, M., and Clemetson, J. 1991. Staurosporine both activates and inhibits serine/threonine kinases(s) in human platelets. Biochem. J. 275:301–306.PubMedGoogle Scholar
  28. 28.
    Surjancev, B. P., Cahill, A. L., and Perlman, R. L. 1993. Staurosporine activates a 60,000 Mr protein kinase in bovine chromaffin cells that phosphorylates myelin basic protein in vitro. J. Neurochem. 61:697–703.CrossRefGoogle Scholar
  29. 29.
    Rasouly, D., and Lazarovici, P. 1994. Staurosporine induces phosphorylation of a 145 kDa protein but does not activate gP140trk in PC12 cells. Eur. J. Pharmacol. 269:255–264.PubMedCrossRefGoogle Scholar
  30. 30.
    Gaschwendt, M., Kittstein, W., and Marks, F. 1994. Elongation factor 2 kinase: Effective inhibition by the novel protein kinase inhibitor rottolerin and relative insensitivity towards staurosporine. FEBS Lett. 338:85–88.CrossRefGoogle Scholar
  31. 31.
    Fujita, K., Lazarovici, P., and Guroff, G. 1989. Regulation of the differentiation of PC12 phaeochromocytoma cells. Environ. Health Perspect. 80:127–142.PubMedGoogle Scholar
  32. 32.
    Levi-Montalchini, R. 1987. Nerve growth factor 35 years later. Science 237:1154–1162.CrossRefGoogle Scholar
  33. 33.
    Rasouly, D., Rahamim, E., Ringel, I., Ginzburg, I., Muarakata C., Matsuda, Y., and Lazarovici, P. 1994. Neurites induced by stauropsproine in PC12 cells are resistant to colchicine and express high levels of tau proteins. Mol. Pharmacol. 45:29–35.PubMedGoogle Scholar
  34. 34.
    Aletta, J. M., Tsao, H., and Greene, L. A. 1990. How do neurites grow? Clues from NGF regulated cytoskeletal phosphoproteins. Pages 203–218, in L. A. Horrocks (ed) Tropic Factors and the Nervous System. Raven Press, New York.Google Scholar
  35. 35.
    Hisanaga, S., and Hirokawa, N. 1990. Dephosphorylation induced interaction of neurofilaments with microtubules. J. Biol. Chem. 266:21852–21858.Google Scholar
  36. 36.
    de Waegh, S. M., Lee, V. M. Y., and Brady, S. T. 1992. Local modulation of neurofilament phosphorylation, axonal caliber and slow axonal transport by myelinating Schwann cells. Cell 68:451–463.PubMedCrossRefGoogle Scholar
  37. 37.
    Eagles, P. A. M., Pant, H. C., and Gainer H. 1990. Neurofilaments. Pages 37–94,in Goldman R. D. and Steinert P. M. (eds.). Cellular and Molecular Biology of Intermediate Filaments. Plenum New York.Google Scholar
  38. 38.
    Lew, J., and Wang, J. H. 1995. Neuronal cdc2-like kinase. TIBS. 20:33–37.PubMedGoogle Scholar
  39. 39.
    Morgan, D. O. 1995. Principles of cdk regulation. Nature 374:131–134.PubMedCrossRefGoogle Scholar
  40. 40.
    Gard, D. L., and Kirchner, M. W. 1985. A polymer dependent increase in phosphorylation in beta-tubulin accompanies differentiation of mouse neuroblastoma cell line. J. Cell Biol. 100:764–774.PubMedCrossRefGoogle Scholar
  41. 41.
    Greene, L. A., and Tischler, A. S. 1976. Establishment of a noradrenergic clonal line of adrenal phaeochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. USA. 73:2424–2428.PubMedCrossRefGoogle Scholar
  42. 42.
    Hashimoto, S., and Hagino, A. 1989. Blockage of nerve growth factor action in PC12 cells by staurosporine, a potent protein kinase inhibitor. J. Neurochem. 53:1675–1685.PubMedCrossRefGoogle Scholar
  43. 43.
    Tischler, A. S., Ruzicka, L. A., and Perlman, R. 1990. Mimicry and inhibition of nerve growth factor effects: Interactions of staurosporine, forskolin, and K252a in PC12 cells and normal rat chromaffin cells in vitro. J. Neurochem. 55:1159–1165.PubMedCrossRefGoogle Scholar
  44. 44.
    Carden, M. J., Trojanowski, J. Q., Shlaepfer, W. W., and Lee, V. M.-Y. 1987. Two stage expression of neurofilament polypeptides during rat neurogenesis with early establishment of adult phosphorylation patterns. J. Neurosci. 7:3489–3504.PubMedGoogle Scholar
  45. 45.
    Yan, G., and Ziff, E. B. 1995. NGF regulates the PC12 cell cycle machinery through specific inhibition of the cdk kinases and induction of cyclin D1. J. Neurosci. 15:6200–6212.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Veeranna
    • 2
  • K. T. Shetty
    • 1
  • N. Amin
    • 2
  • P. Grant
    • 2
  • R. W. Albers
    • 2
  • H. C. Pant
    • 2
  1. 1.Dept. of NeurochemistryNIMHANSBangaloreIndia
  2. 2.Lab. of Neurochemistry (NINDS)NIHBethesda

Personalised recommendations