Skip to main content
Log in

Synaptic degeneration and remodelling after fast kindling of the olfactory bulb

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Kindling of the olfactory bulb using a novel fast protocol (within 24 h) was studied in rats. In target brain regions, the effects of kindling were measured on the concentration of glial fibrillary acidic protein (GFAP) by dot-blot and on the concentrations of neural cell adhesion molecule (NCAM) and the 25 kDa synaptosomal associated protein of the D3 immunoprecipitate (D3(SNAP-25)) by crossed immunoelectrophoresis. Bilateral increases in the levels of GFAP, indicating activation of astrocytes, were detected in primary olfactory cortical projection areas, including the piriform cortex, and also in the basolateral amygdala and dentate gyrus, suggesting that these regions may be functionally altered during the kindling process. In the piriform cortex and dentate gyrus increased NCAM/D3(SNAP-25) ratios found ipsilaterally at seven days after kindling probably reflect an elevated rate of synaptic remodelling. At this time, however, an overall pattern of ipsilateral decreases in the synaptic marker proteins NCAM and D3(SNAP-25) indicated that this remodelling occurred on a background of synaptic degeneration. These results confirm previous studies showing that kindling is associated with synaptic remodelling and neuronal degeneration in the hippocampal formation and extends the area of plasticity to include the piriform cortex which is believed to be central to the kindling process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Racine, R. J., Ivy, G. O., and Milgram, N. W. 1989. Kindling: clinical relevance and anatomical substrate. Pages 15–34,in Bolwig, T. G., and Trimble, M. R. (eds.), The Clinical Relevance of Kindling, John Wiley & Sons, Chichester.

    Google Scholar 

  2. Bolwig, T. G., and Trimble, M. R. 1989. The clinical relevance of kindling. John Wiley & Sons, Chichester.

    Google Scholar 

  3. Post, R. M. 1992. Transduction of psychosocial stress into the neurobiology of recurrent affective disorder. Am. J. Psychiat. 149: 999–1010.

    PubMed  CAS  Google Scholar 

  4. Racine, R. J., and McIntyre, D. C. 1986. Mechanisms of kindling: a current view. Pages 109–121,in Doane, B. K., and Livingston, K. E. (eds.), The Limbic System: Functional Organization and Clinical Disorders, Raven Press, New York.

    Google Scholar 

  5. Tauck, D. L., and Nadler, J. V. 1985. Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid-treated rats. J. Neurosci. 5:1016–1022.

    PubMed  CAS  Google Scholar 

  6. Sutula, T., Xiao-Xian, H., Cavazos, J., and Scott, G. 1988. Synaptic reorganization in the hippocampus induced by abnormal functional activity. Sci. 239:1147–1150.

    Article  CAS  Google Scholar 

  7. Sutula, T. P. 1990. Experimental models of temporal lobe epilepsy: new insights from the study of kindling and synaptic reorganization. Epilepsia 31:S45-S54.

    PubMed  Google Scholar 

  8. Thiery, J.-P., Brackenbury, R., Rutishauser, U., and Edelman, G. M. 1977. Adhesion among neural cells of the chick embryo. II. Purification and characterization of a cell adhesion molecule from neural retina. J. Biol. Chem. 252:6841–6845.

    PubMed  CAS  Google Scholar 

  9. Edelman, G. M. 1988. Morphoregulatory molecules. Biochemistry 27:3533–3543.

    Article  PubMed  CAS  Google Scholar 

  10. Jørgensen, O. S., and Bock, E. 1974. Brain specific synaptosomal membrane proteins demonstrated by crossed immunoelectrophoresis. J. Neurochem. 23:879–880.

    Article  PubMed  Google Scholar 

  11. Jørgensen, O. S. 1981. Neuronal membrane D2-protein during rat brain ontogeny. J. Neurochem. 37:939–946.

    Article  PubMed  Google Scholar 

  12. Jørgensen, O. S. 1995. Neural cell adhesion molecule (NCAM) as a quantitative marker in synaptic remodelling. J. Neurochem. Res. 20:533–547.

    Article  Google Scholar 

  13. Oyler, G. A., Higgins, G. A., Hart, R. A., Battenberg, E., Billingsley, M., Bloom, F. E., and Wilson, M. C. 1989. The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations. J. Cell Biol. 109: 3039–3052.

    Article  PubMed  CAS  Google Scholar 

  14. Jørgensen O. S. 1996. SNAP-25 is the major immunoreactive component of the brain-specific D3 protein. Neuroreport, in press.

  15. Jørgensen, O. S., and Bolwig, T. G. 1979. Synaptic proteins after electroconvulsive stimulation. Sci. 205:705–707.

    Article  Google Scholar 

  16. Kragh, J., Bolwig, T. G., Woldbye, D. P. D., and Jørgensen, O. S. 1993. Electroconvulsive shock and lidocaine-induced seizures in the rat activate astrocytes as measured by glial fibrillary acidic protein. Biol. Psychiat. 33:794–800.

    Article  PubMed  CAS  Google Scholar 

  17. Mogensen, J., Pedersen, S. L., and Jørgensen, O. S. 1994. Electroconvulsive stimulations, learning, and protein changes in the rat brain. Pharm. Biochem. Behav. 47:647–657.

    Article  CAS  Google Scholar 

  18. Hansen, A., Jørgensen, O. S., Bolwig, T. G., and Barry, D. I. 1990. Hippocampal kindling alters the concentration of glial fibrillary acidic protein and other marker proteins in rat brain. Brain Res. 531:307–311.

    Article  PubMed  CAS  Google Scholar 

  19. Lothman, E. W., Hatleid, J. M., Zorumski, C. F., Conry, J. A., Moon, P. F., and Perlin, J. B. 1985. Kindling with rapidly recurring hippocampal seizures, Brain Res. 360:83–91.

    Article  PubMed  CAS  Google Scholar 

  20. Lothman, E. W., Perlin, J. B., and Salerno, R. A. 1988. Response properties of rapidly recurring hippocampal seizures in rats. Epilepsy Res. 2:356–366.

    Article  PubMed  CAS  Google Scholar 

  21. Lothman, E. W., and Williamson, J. M. 1993. Rapid kindling with recurrent hippocampal seizures. Epilepsy Res. 14:209–220.

    Article  PubMed  CAS  Google Scholar 

  22. Goddard, G. V., McIntyre, D. C., and Leech, C. K. 1969. A permanent change in brain function resulting from daily electrical stimulation. Exp. Neurol. 25:295–330.

    Article  PubMed  CAS  Google Scholar 

  23. Hansen, A., Jørgensen, O. S., Bolwig, T. G., and Barry D. I. 1991. Hippocampal kindling in the rat is associated with time-dependent increases in the concentration of glial fibrillary acidic protein. J. Neurochem. 57:1716–1720.

    Article  PubMed  CAS  Google Scholar 

  24. McIntyre, D. C., and Kelly, M. E. 1990. Is the pyriform cortex important for limbic kindling? Pages 21–29,in Wada, J. A. (ed.), Kindling 4, Plenum Press, New York.

    Google Scholar 

  25. Eng, L. F. 1985. Glial fibrillary acidic protein: the major protein of glial intermediate filaments in differentiated astrocytes. J. Neuroimmunol. 8:203–214.

    Article  PubMed  CAS  Google Scholar 

  26. Khurgel, M., Racine, D. J., and Ivy, G. O. 1992. Kindling causes changes in the composition of the astrocytic cytoskeleton. Brain Res. 592:338–342.

    Article  PubMed  CAS  Google Scholar 

  27. Eddleston, M., and Mucke, L. 1993. Molecular profile of reactive astrocytes—implications for their role in neurologic disease. Neurosci. 54:15–36.

    Article  CAS  Google Scholar 

  28. Norenberg, M. D. 1994. Astrocyte responses to CNS injury. J. Neuropathol. Exp. Neurol. 53:213–220.

    PubMed  CAS  Google Scholar 

  29. Barry, D. I., Wanscher, B., Kragh, J., Bolwig, T. G., Kokaia, M., Brundin, P., Björklund, A., and Lindvall, O. 1989. Graft of fetal locus coeruleus neurons in rat amygdala-piriform cortex suppress seizure development in hippocampal kindling. Exp. Neurol. 106: 125–132.

    Article  PubMed  CAS  Google Scholar 

  30. Racine, R. J. 1972. Modification of seizure activity by electrical stimulation: II. Motor seizure. Electroencephalogr. Clin. Neurophysiol. 32:281–294.

    Article  PubMed  CAS  Google Scholar 

  31. Paxinos, G., and Watson C. 1986. The rat brian in stereotaxic coordinates. 2nd ed. Academic Press, Sydney.

    Google Scholar 

  32. Jørgensen, O. S., and Stein, D. G. 1992. Transplant and ganglioside GM1 mediated neuronal recovery in rats with brain lesions. Rest. Neurol. Neurosci. 3:311–320.

    Google Scholar 

  33. Racine, R. J., Burhnham, W. M., Gartner, J. G., and Levitan, D. 1973. Rates of motor seizure development in rat, subjected to electrical brain stimulation: strain and inter-stimulation interval effects. Electroencephalogr. Clin. Neurophysiol. 35:553–556.

    Article  PubMed  CAS  Google Scholar 

  34. Mucha, R. F., and Pinel, J. P. J. 1977. Postseizure inhibition of kindled seizures. Exp. Neurol. 54:266–282.

    Article  PubMed  CAS  Google Scholar 

  35. Sainsbury, R. S., Bland, B. H., and Buchan, D. H. 1978. Electrically induced seizure activity in the hippocampus: time course for post seizure inhibition of subsequent kindled seizures. Behav. Biol. 22:479–488.

    Article  PubMed  CAS  Google Scholar 

  36. Steward, O., Torre, E. R., Tomasulo, R., and Lothman, E. 1992. Seizures and the regulation of astroglial gene expression. Epilepsy Res. [Suppl 7]:197–209.

    Google Scholar 

  37. Torre, E. R., Lothman, E., and Steward, O. 1993. Glial response to neuronal activity: GFAP-mRNA and protein levels are transiently increased in the hippocampus after seizures. Brain Res. 631:256–264.

    Article  PubMed  CAS  Google Scholar 

  38. McIntyre, D. C., and Kelly, M. E. 1993. Are differences in dorsal hippocampal kindling related to amygdala-piriform area, excitability? Epilepsy Res. 14:49–61.

    Article  PubMed  CAS  Google Scholar 

  39. Lothman, E. W., Stringer, J. L., and Bertram, E. H. 1992. The dentate gyrus as a control point for seizures in the hippocampus and beyond. Epilepsy Res. [Suppl 7]:301–313.

    Google Scholar 

  40. Schwob, J. E., and Price, J. L. 1984. The development of axonal connections in the central olfactory system of rats. J. Comp. Neurol. 223:177–202.

    Article  PubMed  CAS  Google Scholar 

  41. Haberly, L. B. 1990. Olfactory cortex. Pages 317–345,in Shepherd, G. M. (ed.), The synaptic organization of the brain, Oxford University Press, Oxford.

    Google Scholar 

  42. Morimoto, K., and Goddard, G. V. 1987. The substantia nigra is an important site for the containment of seizure generalization in the kindling model of epilepsy. Epilepsia 28:1–10.

    PubMed  CAS  Google Scholar 

  43. Depaulis, A., Vergnes, M., and Marescaux, C. 1994. Endogenous control of epilepsy: the nigral inhibitory system. Prog. Neurobiol. 42:33–52.

    Article  PubMed  CAS  Google Scholar 

  44. Lothman, E. W., Hatlelid, J. M., and Zorumski, C. F. 1985. Functional mapping of limbic seizures originating in the hippocampus: a combined 2-deoxyglucose and electrophysiologic study. Brain Res. 360:92–100.

    Article  PubMed  CAS  Google Scholar 

  45. Engel, J., Wolfson, L., and Brown, L. 1978. Anatomical correlates of electrical and behavioral events related to amygdaloid kindling. Ann. Neurol. 3:538–544.

    Article  PubMed  Google Scholar 

  46. Zilles, K., Hajós, F., Kálmán, M., and Schleicher, A. 1991. Mapping of glial fibrillary acidic protein-immunoreactivity in the rat forebrain and mesencephalon by computerized image analysis. J. Comp. Neurol. 308:340–355.

    Article  PubMed  CAS  Google Scholar 

  47. Dahl, D., Björklund, H., and Bignami, A. 1986. Immunological markers in astrocytes. Pages 1–25in Fedoroff, S., and Vernadakis, A. (eds.), Astrocytes. Cell biology and pathology of astrocytes, vol. 3, Academic Press, London.

    Google Scholar 

  48. Miller, C., Tsatas, O., and David, S. 1994. Dibutyryl cAMP, interleukin-1b, and macrophage conditioned medium enhance the ability of astrocytes to promote neurite growth. J. Neurosci. Res. 38:56–63.

    Article  PubMed  CAS  Google Scholar 

  49. Qian, J., Bull, M. S., and Levitt, P. 1992. Target-derived astroglia regulate axonal outgrowth in a region-specific manner. Dev. Biol. 149:278–294.

    Article  PubMed  CAS  Google Scholar 

  50. Steward, O., Torre, E. R., Phillips, L. L., and Trimmer, P. A. 1990. The process of reinnervation in the dentate gurys of adult rats: time course of increases in mRNA for glial fibrillary acidic protein. J. Neurosci. 10:2373–2384.

    PubMed  CAS  Google Scholar 

  51. Siesjö, B. K., and Wieloch, T. 1986. Epileptic brain damage: pathophysiology and neurochemical pathology. Adv. Neurol. 44:813–847.

    PubMed  Google Scholar 

  52. Hawrylak, N., Chang, F.-L. F., and Greenough, W. T. 1993. Astrocytic and synaptic response to kindling in hippocampal subfield CA1. II. Synaptogenesis and astrocytic process increases to in vivo kindling. Brain Res. 603:309–316.

    Article  PubMed  CAS  Google Scholar 

  53. Kraig, R. P., Dong, L. M., Thisted, R., and Jaeger, C. B. 1991. Spreading depression increases immunohistochemical staining of glial fibrillary acidic protein. J. Neurosci. 11:2187–2198.

    PubMed  CAS  Google Scholar 

  54. Koroleva, V. I., Vinogradova, L. V., and Bures, J. 1993. Reduced incidence of cortical spreading depression in the course of pentylenetetrazol kindling in rats. J. Neurosci. 608:107–114.

    CAS  Google Scholar 

  55. Bonthius, D. J., Stringer, J. L., Lothman, E. W., and Steward, O. 1994. Spreading depression and reverberatory seizures induce the upregulation of mRNA for glial fibrillary acidic protein. Brain Res. 645:215–224.

    Article  PubMed  CAS  Google Scholar 

  56. Goldowitz, D., Barthels, D., Lorenzon, N., Jungblut, A., and Wille, W. 1990. NCAM gene expression during the development of cerebellum and dentate gyrus in the mouse. Dev. Brain Res. 52:151–160.

    Article  CAS  Google Scholar 

  57. Jucker, M., Mondadori, C., Mojaheri, H., Bartsch, U., and Schachner, M. 1995. Transient upregulation of NCAM mRNA in astrocytes in response to entorhinal cortex lesions and ischemia. Mol. Brain Res. 28:149–156.

    Article  PubMed  CAS  Google Scholar 

  58. Le Gal La Salle, G., Rougon, G., and Valin, A. 1992. The embryonic form of neural cell surface molecule (E-NCAM) in the rat hippocampus and its reexpression on glial cells following kainic acid-induced status epilepticus. J. Neurosci. 12:872–882.

    Google Scholar 

  59. Lehmann, S., Kuchler, S., Gobaille, S., Marchal, P., Badache, A., Vincendon, G., and Zanetta, J.-P. 1993. Lesion-induced re-expression of neonatal recognition molecules in adult rat cerebellum. Brain Res. Bull. 30:515–521.

    Article  PubMed  CAS  Google Scholar 

  60. Miller, P. D., Styren, S. D., Lagenaur, C. F., and DeKosky, S. T. 1994. Embryonic neural cell adhesion molecule (N-CAM) is elevated in the denervated rat dentate gyrus. J. Neurosci. 14:4217–4225.

    PubMed  CAS  Google Scholar 

  61. Geddes, J. W., Hess, E. J., Hart, R. A., Kesslak, J. P., Cotman, C. W., and Wilson, M. C. 1990. Lesions of hippocampal circuitry define synaptosomal-associated protein-25 (SNAP-25) as a novel presynaptic marker. Neurosci. 38:515–525.

    Article  CAS  Google Scholar 

  62. Oyler, G. A., Polli, J. W., Wilson, M. C., and Billingsley, M. L. 1991. Developmental expression of the 25-kDa synaptosomal-associated protein (SNAP-25) in rat brain. Proc. Natl. Acad. Sci. U.S.A. 88:5247–5251.

    Article  PubMed  CAS  Google Scholar 

  63. Söllner, T., and Rothman, J. E. 1994. Neurotransmission: harnessing fusion machinery at the synapse. TINS 17:344–348.

    PubMed  Google Scholar 

  64. Bock, E., and Bræstrup, C. 1978. Regional distribution of the synaptic membrane proteins: D1, D2 and D3. J. Neurochem. 30: 1603–1607.

    Article  PubMed  CAS  Google Scholar 

  65. Cavazos, J. E., and Sutula, T. P. 1990. Progressive neuronal loss induced by kindling: a possible mechanism for mossy fiber synaptic reorganization and hippocampal sclerosis. Brain Res. 527: 1–6.

    Article  PubMed  CAS  Google Scholar 

  66. Cavazos, J. E., Das, I., and Sutula, T. P. 1994. Neuronal loss induced in limbic pathways by kindling: evidence for induction of hippocampal sclerosis by repeated brief seizures. J. Neurosci. 14:3106–3121.

    PubMed  CAS  Google Scholar 

  67. Jørgensen, O. S., and Balázs, R. 1993. Plastic neuronal changes in Alzheimer’s disease associated with activation of astrocytes and enhanced neurotrophic activity. Pages 190–198,in Corain, B., Iqbal, K., Nicolini, M., Winblad, B., Wisniewski, H., and Zatta, P. (eds.), Alzheimer’s disease: Advances in clinical and basic research, John Wiley & Sons, London.

    Google Scholar 

  68. Bertram, E. H., Lothman, E. W., and Lenn, N. J. 1990. The hippocampus in experimental chronic epilepsy: a morphometric analysis. Ann. Neurol. 27:43–48.

    Article  PubMed  CAS  Google Scholar 

  69. Geinisman, Y., Morrell, F., and deToledo-Morrell, L. 1988. Remodeling of synaptic architecture during hippocampal “kindling”. Proc. Natl. Acad. Sci. USA 85:3260–3264.

    Article  PubMed  CAS  Google Scholar 

  70. Geinisman, Y., Morrell, F., and deToledo-Morrell, L. 1989. Perforated synapses on double-headed dendritic spines: a possible structural substrate of synaptic plasticity. Brain Res. 480:326–329.

    Article  PubMed  CAS  Google Scholar 

  71. Geinisman, Y., deToledo-Morrell, L., and Morrell, F. 1990. The brain’s record of experience: kindling-induced enlargement of the active zone in hippocampal perforated synapses. Brain Res. 513: 175–179.

    Article  PubMed  CAS  Google Scholar 

  72. Keller, F., and Levitt, P. 1989. Developmental and regeneration-associated regulation of the limbic system associated membrane protein in explant cultures of the rat brain. Neurosci. 28:455–474.

    Article  CAS  Google Scholar 

  73. Cronin, J., Obenaus, A., Houser C. R., and Dudek, F. E. 1992. Electrophysiology of the dentate granule cells after kainate-induced synaptic reorganization of the mossy fibers. Brain Res. 573: 305–310.

    Article  PubMed  CAS  Google Scholar 

  74. Mathern, G. W., Cifuentes, F., Leite, J. P., Pretorius, J. K., and Babb, T. L. 1993. Hippocampal EEG excitability and chronic spontaneous seizures are associated with aberrant synaptic reorganization in the rat intrahippocampal kainate model. Electro-enceph. Clin. Neurophysiol. 87:326–339.

    Article  CAS  Google Scholar 

  75. Sloviter, R. S. 1992. Possible functional consequences of synaptic reorganization in the dentate gyrus of kainate-treated rats. Neurosci. Lett. 137:91–96.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woldbye, D.P.D., Bolwig, T.G., Kragh, J. et al. Synaptic degeneration and remodelling after fast kindling of the olfactory bulb. Neurochem Res 21, 585–593 (1996). https://doi.org/10.1007/BF02527757

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02527757

Key words

Navigation