Evidence for an in vivo and in vitro modulation of endogenous cortical GABA release by α-glycerylphosphorylcholine

Abstract

The effects of α-glycerylphosphorylcholine (α-GPC) on endogenous cortical GABA release were studied both in vivo and in vitro. In freely moving rats, equipped with epidural cups, α-GPC (30–300 mg/kg i.p.) increased GABA release. This effect was potentiated by atropine, both systematically administered (5 mg/kg i.p.) and locally applied (1.4 μM), but not by mecamylamine (4 mg/kg i.p.). The α-GPC-induced increasein GABA release was abolished in rats pretreated with the α1 receptor antagonist prazosin (14 μg/kg i.p.). In cortical slices α-GPC (0.4 mM) increased the spontaneous GABA efflux. This effectwas abolished by tetrodotoxin (0.5 μM) and prazosin (1 μM), but not by atropine (0.15 μM) ormecamylamine (2.5μM). These results indicate that the facilitatory response by α-GPC on GABArelease does not depend on a direct activation of either muscarinic or nicotinic receptors, but suggest the involvement of the noradrenergic system.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Bartus, R. T., Dean, R. L., Beer, B., and Lippa, A. S. 1982. The cholinergic hypothesis of geriatric memory disfunction. Science 217:408–417.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Fischer, W., Gage, F. H., and Bjorklund, A. 1989. Degenerative changes in forebrain cholinergic nuclei correlate with cognitive impairments in aged rats. Eur. J. Neurosci. 1:34–41.

    PubMed  Article  Google Scholar 

  3. 3.

    Mayeux, R. 1990. Therapeutic strategies in Alzheimer’s disease. Neurology 40:175–179.

    PubMed  CAS  Google Scholar 

  4. 4.

    O’Neill, C., Marcusson, J., Nordberg, A., and Winblad, B. 1987. The influence of age on neurotransmitters in the human brain. Pages 183–198,in Govoni, S., and Battaini, F. (eds.) Modification of cell to cell signals during normal and pathological aging. Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  5. 5.

    Finali, G., Piccinin, M., and Piccirilli, M. 1992. Le basi neurochimiche della terapia farmacologica delle demenze. Parte seconda: aminoacidi e peptidi. Basi Raz. Ter. 22 (2):99–121.

    Google Scholar 

  6. 6.

    Nabeshima, T., Noda, Y., Tohyama, K., Itoh, J., and Kameyama, T. 1990. Effects of DM-9384 in a model of amnesia based on animals with GABAergic neuronal dysfunctions. Eur. J. Pharmacol. 178:143–149.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Manyan, N. B., Katz, L., Hare, T. A., Gerber, J. C., and Grossman, M. H. 1980. Levels of γ-aminobutyric acid in cerebrospinal fluid in various neurologic disorders. Arch. Neurol. 37:352–355.

    Google Scholar 

  8. 8.

    Zimmer, R., Teelken, A. W., Trieling, W. B., Weber, W., Weihmayr, T., and Lauter, H. 1984. γ-aminobutyric acid and homovanillic acid concentration in the CNS of patients with senile dementia of Alzheimer’s type. Arch. Neurol. 41:602–604.

    PubMed  CAS  Google Scholar 

  9. 9.

    Sharma, A. C., and Kulkami, S. K. 1993. Baclofen sensitive scopolamine-induced short-term deficits in mice. Indian J. Exp. Biol. 31:348–352.

    PubMed  CAS  Google Scholar 

  10. 10.

    Davies, C. H., Starkey, S. J., Pozza, M. F., and Collingride, G. L. 1991. GABA-B autoreceptors regulate the induction of LTP. Nature 349:609–611.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Izquierdo, I. 1991. Role of NMDA receptors in memory. Trends Pharmacol. Sci. 12:128–129.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Sigala, S., Imperato, A., Rizzonelli, P., Casolini, P., Missale, C., and Spano, P. F. 1992. L-alpha-glycerylphosphorylcholine antagonizes scopolamine-induced amnesia and enhances hippocampal cholinergic transmission in the rat. Eur. J. Pharmacol. 211:351–358.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Lopez, C. M., Govoni, S., Battaini, F., Bergamaschi, S., Longoni, A., Giaroni, C., and Trabucchi, M. 1991. Effect of a new cognition enhancer, alpha-glycerylphosphorylcholine, on scopolamine-induced amnesia and brain acetylcholine. Pharmacol. Biochem. Behav. 39:835–840.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Canal, N., Franceschi, M., Alberoni, M., Castiglioni, C., De Moliner, P., and Longoni, A. 1991. Effect of L-alpha-glycerylphosphoryl-choline on amnesia caused by scopolamine. Int. J. Clin. Pharmacol. Ther. Toxicol. 29:103–107.

    PubMed  CAS  Google Scholar 

  15. 15.

    Parnetti, L., Abate, G., Bartorelli, L., Cucinotta, D., Cuzzupuli, M., Maggioni, M., Villardita, C., and Senin, U. 1993. Multicentre study of 1-α-Glyceryl-Phosphorylcholine vs ST200 among patients with probable senile dementia of Alzheimer’s Type. Drugs Aging 3:159–164.

    PubMed  CAS  Google Scholar 

  16. 16.

    Beani, L., Bianchi, C., Santinoceto, L., and Marchetti, P. 1968. The cerebral acetylcholine release in conscious rabbits with semipermanently implanted epidural cups. Int. J. Neuropharmacol. 7: 469–481.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Siniscalchi, A., Beani, L., and Bianchi, C. 1990. Different effects of 8-OHDPAT, a 5-HTIA receptor agonist, on cortical acetylcholine release, electrocorticogram and body temperature in guinea pigs and rats. Eur. J. Pharmacol. 175:219–223.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Tanganelli, S., Ferraro, L., Bianchi, C., and Beani, L. 1992. Changes in gamma-aminobutyric acid release induced by topical administration of drugs affecting its metabolism and receptors: studies in freely moving guinea pigs with epidural cups. Neurochem. Int. 21:15–20.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Beani, L., Bianchi, C., Giacomelli, A., and Tamberi, F. 1978. Noradrenaline inhibition of acetylcholine release from guinea pig brain. Eur. J. Pharmacol. 48:179–193.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Ferraro, L., Tanganelli, S., Calo’, G., Antonelli, T., Fabrizi, A., Acciarri, N., Bianchi, C., Beani, L., and Simonato, M. 1993. Noradrenergic modulation of γ-aminobutyric acid outflow from the human cerebral cortex. Brain Res. 629:103–108.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Bertilsson, L., and Costa, E. 1976. Mass-fragmentographic quantitation of glutamic acid and GABA in cerebellar nucleic and sympathetic ganglia of rats. J. Chromatogr. 118:395–399.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Moroni, F., Tanganelli, S., Antonelli, T., Carla’, V., Bianchi, C., and Beani, L. 1983. Modulation of cortical acetylcholine and γ-aminobutyric acid release in freely moving guinea pigs: effect of clonidine and other adrenergic drugs. J. Pharmac. Exp. Ther. 227: 435–440.

    CAS  Google Scholar 

  23. 23.

    Bianchi, C., Ferraro, L., Tanganelli, S., Morari, M., Spalluto, G., Simonato, M., and Beani, L. 1995. 5-Hydroxytryptamine-mediated effects of nicotine on endogenous GABA efflux from guineapig cortical slices. Br. J. Pharmacol. 116:2724–2728.

    PubMed  CAS  Google Scholar 

  24. 24.

    Raiteri, M., Marchi, M., Paudice, P., and Pittaluga, A. 1990. Muscarinic receptors mediating inhibition of gamma-aminobutyric acid release in rat corpus striatum and their pharmacological characterization. J. Pharmacol. Exp. Ther. 254:498–501.

    Google Scholar 

  25. 25.

    Ferraro, L., Tanganelli, S., and Beani, L. 1994. Muscarinic (M2) mediated inhibition of the electrically-evoked endogenous GABA release from guinea pig cerebral cortex slices. Pol. J. Pharmacol. 46:308–309.

    Google Scholar 

  26. 26.

    Beani, L., Tanganelli, S., Antonelli, T., and Bianchi, C. 1986. Noradrenergic modulation of cortical acetylcholine release is both direct and γ-aminobutyric acid-mediated. J. Pharmacol. Exp. Ther. 236:230–236.

    PubMed  CAS  Google Scholar 

  27. 27.

    Beani, L., Bianchi, C., Tanganelli, S., Antonelli, T., Simonato, M., and Rando, S. 1988. Inversion of alpha-2 and alpha-1 noradrenergic control of the cortical release of acetylcholine and gamma-aminobutyric acid in morphine-tolerant guinca pigs. J. Pharmacol. Exp. Ther. 247:294–301.

    PubMed  CAS  Google Scholar 

  28. 28.

    Mason, S. T., and Fibiger, H. C. 1979. Possible behavioural function for noradrenaline-acetylcholine in brain. Nature 277:396–397.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Ennis, M., and Aston-Jones, G. 1988. Activation of Locus Coeruleus from Nucleus Paragigantocellularis: a new excitatory amino acid pathway in brain. J. Neurosci. 8:3644–3657.

    PubMed  CAS  Google Scholar 

  30. 30.

    Bianchi, C., Tanganelli, S., Marzola, G., and Beani, L. 1982. GABA induced changes in acetylcholine release from slices of guinea pig brain. Naunyn-Schmiedeberg’s Arch. Pharmacol. 318: 253–258.

    Article  CAS  Google Scholar 

  31. 31.

    Govoni, S., Lucchi, L., Battaini, F., and Trabucchi, M. 1992. Protein-kinase C increase in rat brain cortical membranes may be promoted by cognition enhancing drugs. Life Sci. 50:125–128.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Siniscalchi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ferraro, L., Tanganelli, S., Marani, L. et al. Evidence for an in vivo and in vitro modulation of endogenous cortical GABA release by α-glycerylphosphorylcholine. Neurochem Res 21, 547–552 (1996). https://doi.org/10.1007/BF02527751

Download citation

Key words

  • Epidural cups
  • cortical slices
  • GABA release
  • rat
  • neurotransmitter interactions