Advertisement

Neurochemical Research

, Volume 21, Issue 5, pp 547–552 | Cite as

Evidence for an in vivo and in vitro modulation of endogenous cortical GABA release by α-glycerylphosphorylcholine

  • L. Ferraro
  • S. Tanganelli
  • L. Marani
  • C. Bianchi
  • L. Beani
  • A. Siniscalchi
Original Articles

Abstract

The effects of α-glycerylphosphorylcholine (α-GPC) on endogenous cortical GABA release were studied both in vivo and in vitro. In freely moving rats, equipped with epidural cups, α-GPC (30–300 mg/kg i.p.) increased GABA release. This effect was potentiated by atropine, both systematically administered (5 mg/kg i.p.) and locally applied (1.4 μM), but not by mecamylamine (4 mg/kg i.p.). The α-GPC-induced increasein GABA release was abolished in rats pretreated with the α1 receptor antagonist prazosin (14 μg/kg i.p.). In cortical slices α-GPC (0.4 mM) increased the spontaneous GABA efflux. This effectwas abolished by tetrodotoxin (0.5 μM) and prazosin (1 μM), but not by atropine (0.15 μM) ormecamylamine (2.5μM). These results indicate that the facilitatory response by α-GPC on GABArelease does not depend on a direct activation of either muscarinic or nicotinic receptors, but suggest the involvement of the noradrenergic system.

Key words

Epidural cups cortical slices GABA release rat neurotransmitter interactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bartus, R. T., Dean, R. L., Beer, B., and Lippa, A. S. 1982. The cholinergic hypothesis of geriatric memory disfunction. Science 217:408–417.PubMedCrossRefGoogle Scholar
  2. 2.
    Fischer, W., Gage, F. H., and Bjorklund, A. 1989. Degenerative changes in forebrain cholinergic nuclei correlate with cognitive impairments in aged rats. Eur. J. Neurosci. 1:34–41.PubMedCrossRefGoogle Scholar
  3. 3.
    Mayeux, R. 1990. Therapeutic strategies in Alzheimer’s disease. Neurology 40:175–179.PubMedGoogle Scholar
  4. 4.
    O’Neill, C., Marcusson, J., Nordberg, A., and Winblad, B. 1987. The influence of age on neurotransmitters in the human brain. Pages 183–198,in Govoni, S., and Battaini, F. (eds.) Modification of cell to cell signals during normal and pathological aging. Springer-Verlag, Berlin, Heidelberg.Google Scholar
  5. 5.
    Finali, G., Piccinin, M., and Piccirilli, M. 1992. Le basi neurochimiche della terapia farmacologica delle demenze. Parte seconda: aminoacidi e peptidi. Basi Raz. Ter. 22 (2):99–121.Google Scholar
  6. 6.
    Nabeshima, T., Noda, Y., Tohyama, K., Itoh, J., and Kameyama, T. 1990. Effects of DM-9384 in a model of amnesia based on animals with GABAergic neuronal dysfunctions. Eur. J. Pharmacol. 178:143–149.PubMedCrossRefGoogle Scholar
  7. 7.
    Manyan, N. B., Katz, L., Hare, T. A., Gerber, J. C., and Grossman, M. H. 1980. Levels of γ-aminobutyric acid in cerebrospinal fluid in various neurologic disorders. Arch. Neurol. 37:352–355.Google Scholar
  8. 8.
    Zimmer, R., Teelken, A. W., Trieling, W. B., Weber, W., Weihmayr, T., and Lauter, H. 1984. γ-aminobutyric acid and homovanillic acid concentration in the CNS of patients with senile dementia of Alzheimer’s type. Arch. Neurol. 41:602–604.PubMedGoogle Scholar
  9. 9.
    Sharma, A. C., and Kulkami, S. K. 1993. Baclofen sensitive scopolamine-induced short-term deficits in mice. Indian J. Exp. Biol. 31:348–352.PubMedGoogle Scholar
  10. 10.
    Davies, C. H., Starkey, S. J., Pozza, M. F., and Collingride, G. L. 1991. GABA-B autoreceptors regulate the induction of LTP. Nature 349:609–611.PubMedCrossRefGoogle Scholar
  11. 11.
    Izquierdo, I. 1991. Role of NMDA receptors in memory. Trends Pharmacol. Sci. 12:128–129.PubMedCrossRefGoogle Scholar
  12. 12.
    Sigala, S., Imperato, A., Rizzonelli, P., Casolini, P., Missale, C., and Spano, P. F. 1992. L-alpha-glycerylphosphorylcholine antagonizes scopolamine-induced amnesia and enhances hippocampal cholinergic transmission in the rat. Eur. J. Pharmacol. 211:351–358.PubMedCrossRefGoogle Scholar
  13. 13.
    Lopez, C. M., Govoni, S., Battaini, F., Bergamaschi, S., Longoni, A., Giaroni, C., and Trabucchi, M. 1991. Effect of a new cognition enhancer, alpha-glycerylphosphorylcholine, on scopolamine-induced amnesia and brain acetylcholine. Pharmacol. Biochem. Behav. 39:835–840.PubMedCrossRefGoogle Scholar
  14. 14.
    Canal, N., Franceschi, M., Alberoni, M., Castiglioni, C., De Moliner, P., and Longoni, A. 1991. Effect of L-alpha-glycerylphosphoryl-choline on amnesia caused by scopolamine. Int. J. Clin. Pharmacol. Ther. Toxicol. 29:103–107.PubMedGoogle Scholar
  15. 15.
    Parnetti, L., Abate, G., Bartorelli, L., Cucinotta, D., Cuzzupuli, M., Maggioni, M., Villardita, C., and Senin, U. 1993. Multicentre study of 1-α-Glyceryl-Phosphorylcholine vs ST200 among patients with probable senile dementia of Alzheimer’s Type. Drugs Aging 3:159–164.PubMedGoogle Scholar
  16. 16.
    Beani, L., Bianchi, C., Santinoceto, L., and Marchetti, P. 1968. The cerebral acetylcholine release in conscious rabbits with semipermanently implanted epidural cups. Int. J. Neuropharmacol. 7: 469–481.PubMedCrossRefGoogle Scholar
  17. 17.
    Siniscalchi, A., Beani, L., and Bianchi, C. 1990. Different effects of 8-OHDPAT, a 5-HTIA receptor agonist, on cortical acetylcholine release, electrocorticogram and body temperature in guinea pigs and rats. Eur. J. Pharmacol. 175:219–223.PubMedCrossRefGoogle Scholar
  18. 18.
    Tanganelli, S., Ferraro, L., Bianchi, C., and Beani, L. 1992. Changes in gamma-aminobutyric acid release induced by topical administration of drugs affecting its metabolism and receptors: studies in freely moving guinea pigs with epidural cups. Neurochem. Int. 21:15–20.PubMedCrossRefGoogle Scholar
  19. 19.
    Beani, L., Bianchi, C., Giacomelli, A., and Tamberi, F. 1978. Noradrenaline inhibition of acetylcholine release from guinea pig brain. Eur. J. Pharmacol. 48:179–193.PubMedCrossRefGoogle Scholar
  20. 20.
    Ferraro, L., Tanganelli, S., Calo’, G., Antonelli, T., Fabrizi, A., Acciarri, N., Bianchi, C., Beani, L., and Simonato, M. 1993. Noradrenergic modulation of γ-aminobutyric acid outflow from the human cerebral cortex. Brain Res. 629:103–108.PubMedCrossRefGoogle Scholar
  21. 21.
    Bertilsson, L., and Costa, E. 1976. Mass-fragmentographic quantitation of glutamic acid and GABA in cerebellar nucleic and sympathetic ganglia of rats. J. Chromatogr. 118:395–399.PubMedCrossRefGoogle Scholar
  22. 22.
    Moroni, F., Tanganelli, S., Antonelli, T., Carla’, V., Bianchi, C., and Beani, L. 1983. Modulation of cortical acetylcholine and γ-aminobutyric acid release in freely moving guinea pigs: effect of clonidine and other adrenergic drugs. J. Pharmac. Exp. Ther. 227: 435–440.Google Scholar
  23. 23.
    Bianchi, C., Ferraro, L., Tanganelli, S., Morari, M., Spalluto, G., Simonato, M., and Beani, L. 1995. 5-Hydroxytryptamine-mediated effects of nicotine on endogenous GABA efflux from guineapig cortical slices. Br. J. Pharmacol. 116:2724–2728.PubMedGoogle Scholar
  24. 24.
    Raiteri, M., Marchi, M., Paudice, P., and Pittaluga, A. 1990. Muscarinic receptors mediating inhibition of gamma-aminobutyric acid release in rat corpus striatum and their pharmacological characterization. J. Pharmacol. Exp. Ther. 254:498–501.Google Scholar
  25. 25.
    Ferraro, L., Tanganelli, S., and Beani, L. 1994. Muscarinic (M2) mediated inhibition of the electrically-evoked endogenous GABA release from guinea pig cerebral cortex slices. Pol. J. Pharmacol. 46:308–309.Google Scholar
  26. 26.
    Beani, L., Tanganelli, S., Antonelli, T., and Bianchi, C. 1986. Noradrenergic modulation of cortical acetylcholine release is both direct and γ-aminobutyric acid-mediated. J. Pharmacol. Exp. Ther. 236:230–236.PubMedGoogle Scholar
  27. 27.
    Beani, L., Bianchi, C., Tanganelli, S., Antonelli, T., Simonato, M., and Rando, S. 1988. Inversion of alpha-2 and alpha-1 noradrenergic control of the cortical release of acetylcholine and gamma-aminobutyric acid in morphine-tolerant guinca pigs. J. Pharmacol. Exp. Ther. 247:294–301.PubMedGoogle Scholar
  28. 28.
    Mason, S. T., and Fibiger, H. C. 1979. Possible behavioural function for noradrenaline-acetylcholine in brain. Nature 277:396–397.PubMedCrossRefGoogle Scholar
  29. 29.
    Ennis, M., and Aston-Jones, G. 1988. Activation of Locus Coeruleus from Nucleus Paragigantocellularis: a new excitatory amino acid pathway in brain. J. Neurosci. 8:3644–3657.PubMedGoogle Scholar
  30. 30.
    Bianchi, C., Tanganelli, S., Marzola, G., and Beani, L. 1982. GABA induced changes in acetylcholine release from slices of guinea pig brain. Naunyn-Schmiedeberg’s Arch. Pharmacol. 318: 253–258.CrossRefGoogle Scholar
  31. 31.
    Govoni, S., Lucchi, L., Battaini, F., and Trabucchi, M. 1992. Protein-kinase C increase in rat brain cortical membranes may be promoted by cognition enhancing drugs. Life Sci. 50:125–128.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • L. Ferraro
    • 1
  • S. Tanganelli
    • 2
  • L. Marani
    • 1
  • C. Bianchi
    • 1
  • L. Beani
    • 1
  • A. Siniscalchi
    • 1
  1. 1.Institute of PharmacologyUniversity of FerraraFerraraItaly
  2. 2.Department of Neuroscience “B.B. Brodie”University of CagliariCagliariItaly

Personalised recommendations