Neurochemical Research

, Volume 21, Issue 6, pp 637–648 | Cite as

Neuropeptide Y perfused in the preoptic area of rats shifts extracellular efflux of dopamine, norepinephrine and serotonin during hypothermia and feeding

  • R. D. Myers
  • M. F. Lankford
  • A. K. Roscoe
Original Articles

Abstract

This study examined the localized action of neuropeptide Y (NPY) on monoamine transmitter activity in the hypothalamus of the unrestrained rat as this peptide induced hypothermia, spontaneous feeding or both responses simultaneously. A guide tube was implanted in the anterior hypothalamic pre-optic area (AH/POA) of Sprague-Dawley rats. Then either control CSF vehicle or NPY in a dose of either 100 ng/μl or 250 ng/μl was perfused by push-pull cannulae in this structure in the fully sated, normothermic rat. Successive perfusions were carried out at a rate of 20 μl/min for 6.0 min with an interval of 6.0 min elapsing between each. Samples of perfusate were assayed by HPLC for their levels of dopamine (DA), norepinephrine (NE), serotonin (5-HT) and their respective metabolites. Whereas control CSF was without effect on body temperature (Tb) or feeding, repeated perfusions of NPY over 3.0 hr caused dose—dependent eating from 4 to 39 g of food, hypothermia of 0.9 to 2.3°C or both responses concurrently. As the rats consumed 11–39 g of food, the efflux of NE, MHPG, DOPAC and 5-HT was enhanced significantly, whereas during the fall in Tb the efflux of NE, DOPAC and 5-HIAA from the AH/POA increased. When the Tb of the rat declined simultaneously with eating behavior, the levels in perfusate of DOPAC and HVA increased significantly while MHPG declined. During perfusion of the AH/POA with NPY the turnover of NE declined while DA and 5-HT turnover increased during hypothermia alone or when accompanied by feeding. These results demonstrate that the sustained elevation in NPY within the AH/POA causes a selective alteration in the activity of the neurotransmitters implicated in thermoregulation, satiety and hunger. These findings suggest that both DA and NE comprise intermediary factors facilitating the action of NPY on neurons involved in thermoregulatory and ingestive processes. The local activity of NPY on hypothalamic neurons apparently shifts the functional balance of serotonergic and catecholaminergic neurons now thought to play a primary role in the control of energy metabolism and caloric intake.

Key Words

Neuropeptide-Y feeding norepinephrine dopamine serotonin food intake NPY anterior hypothalamus 5-HT push-pull perfusion hunger pre-optic area body temperature eating peptides thermoregulation satiety mechanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bouali, S. M., Fournier, A., St-Pierre, S., and Jolicoeur, F. B. 1995. Effects of NPY2–36 on body temperature and food intake following administration into hypothalamic nuclei. Brain Res. Bull. 36:131–135.PubMedCrossRefGoogle Scholar
  2. 2.
    Dryden, S., McCarthy, D., Malabu, U. H., Ware, M., and Williams, G. 1993. Increased neuropeptide Y concentrations in specific hypothalamic nuclei of the rat following treatment with methysergide: evidence that NPY may mediate serotonin’s effects on food intake. Peptides 14:791–796.PubMedCrossRefGoogle Scholar
  3. 3.
    Ekblad, E., Edvinsson, L., Wahlestedt, C., Uddman, R., Hakanson, R., and Sundler, F. 1984. Neuropeptide Y co-exists and co-operates with noradrenaline in perivascular nerve fibers. Regul. Pept. 8:225–235.PubMedCrossRefGoogle Scholar
  4. 4.
    Esteban, J., Chover, A. J., Sanchez, P. A., Mico, J. A., and Gilbert-Rahola, J. 1989. Central administration of neuropeptide Y induces hypothermia in mice. Possible interaction with central noradrenergic systems. Life Sci. 45:2395–2400.PubMedCrossRefGoogle Scholar
  5. 5.
    Gillard, E. R., Dang, D. Q., and Stanley, B. G. 1993. Evidence that neuropeptide Y and dopamine in the perifornical hypothalamus interact antagonistically in the control of food intake. Brain Res. 628:128–136.PubMedCrossRefGoogle Scholar
  6. 6.
    Heilig, M., Edvinsson, L., and Wahlestedt, C. 1991. Effects of intracerebroventricular D-myo-inositol-1,2,6-trisphosphate (PP56), a proposed neuropeptide Y (NPY) antagonist, on locomotor activity, food intake, central effects of NPY and NPY-receptor binding. Eur. J. Pharmacol. 209:27–32.PubMedCrossRefGoogle Scholar
  7. 7.
    Jolicoeur, F. B., Bouali, S. M., Fournier, A., and St-Pierre, S. 1995. Mapping of hypothalamic sites involved in the effects of NPY on body temperature and food intake. Brain Res. Bull. 36: 125–129.PubMedCrossRefGoogle Scholar
  8. 8.
    Kalra, S., Dube, M., and Kalra, P. 1988. Continuous intraventricular infusion of neuropeptide Y evokes episodic food intake in satiated female rats: effects of adrenalectomy and cholecystokinin. Peptides 9:723–728.PubMedCrossRefGoogle Scholar
  9. 9.
    Kerkerian-Le Goff, L., Forni, C., Samuel, D., Bloc, A., Dusticier, N., and Nieoullon, A. 1992. Intracerebroventricular administration of neuropeptide Y affects parameters of dopamine, glutamate and GABA activities in the rat striatum. Brain Res. Bull. 28:187–193.PubMedCrossRefGoogle Scholar
  10. 10.
    Kyrkouli, S. E., Stanley, B. G., and Leibowitz, S. F. 1992. Differential effects of galanin and neuropeptide Y on extracellular norepinephrine levels in the paraventricular hypothalamic nucleus of the rat: a microdialysis study. Life Sci. 51:203–210.PubMedCrossRefGoogle Scholar
  11. 11.
    Lee, T. F., and Myers, R. D. 1984. Calmodulin-induced feeding in the satiated cat: Evidence for involvement of calcium and norepinephrine in the brain. Brain Res. Bull. 12:71–76.PubMedCrossRefGoogle Scholar
  12. 12.
    Lee, T. F., Mora, F., and Myers, R. D. 1985. Dopamine and thermoregulation: an evaluation with special reference to dopaminergic pathways. Neurosci. Biobehav. Rev. 9:589–598.PubMedCrossRefGoogle Scholar
  13. 13.
    Leibowitz, S. F. 1989. Hypothalamic neuropeptide Y, galanin, and amines. Ann. N. Y. Acad. Sci. 575:221–235.PubMedGoogle Scholar
  14. 14.
    Leibowitz, S. F., Weiss, G. F., and Suh, J. 1990. Medial hypothalamic nuclei mediate serotonin’s inhibitory effect on feeding behavior. Pharmacol. Biochem. Behav. 37:735–742.PubMedCrossRefGoogle Scholar
  15. 15.
    Lindefors, N., Brene, S., Herrera-Marschitz, M. and Persson, H. 1990. Neuropeptide gene expression in brain is differentially regulated by midbrain dopamine neurons. Exp. Brain Res. 80:489–500.PubMedCrossRefGoogle Scholar
  16. 16.
    McCaleb, M. L., Myers, R. D., Singer, G., and Willis, G. 1979. Hypothalamic norepinephrine in the rat during feeding and pushpull perfusion with glucose, 2-DG or insulin. Am. J. Physiol. 236: R312–321.PubMedGoogle Scholar
  17. 17.
    McCaleb, M. L., and Myers, R. D. 1980. Cholecystokinin acts on the hypothalamic “noradrenergic system” involved in feeding. Peptides 1:47–49.PubMedCrossRefGoogle Scholar
  18. 18.
    Martin, G. E., and Myers, R. D. 1976. Dopamine efflux from the brain stem of the rat during feeding, drinking and lever-pressing for food. Pharmacol. Biochem. Behav. 4:551–560.PubMedCrossRefGoogle Scholar
  19. 19.
    Midgley, L. P., Wagstaff, J. D., Singh, N. A., Bush, L. G., Gibb, J. W., and Hanson, G. R. 1994. Dynamic dopaminergic regulation of neuropeptide Y systems in discrete striatal and accumbens regions. Eur. J. Pharmacol. 251:191–199.PubMedCrossRefGoogle Scholar
  20. 20.
    Miñano, F. J., Peinado, J. M., and Myers, R. D. 1988. Neurotensin perfused in hypothalamus of sated or fasted rat: HPLC analysis of release of DA, NE and 5-HT and their metabolites, Peptides 9: 1381–1387.PubMedCrossRefGoogle Scholar
  21. 21.
    Miñano, F. J., Peinado, J. M., and Myers, R. D. 1989. Profile of NE, DA and 5-HT activity shifts in medial hypothalamus perfused by 2-DG and insulin in the sated or fasted rat. Brain Res. Bull. 22 (4):695–704.PubMedCrossRefGoogle Scholar
  22. 22.
    Myers, R. D. 1974. Handbook of drug and chemical stimulation of the brain. Pages 237–354, New York: Van Nostrand Reinhold.Google Scholar
  23. 23.
    Myers, R. D. 1977. Chronic methods—intraventricular infusion, CSF sampling and push-pull perfusion. Pages 281–315,in Myers, R. D. (ed.) Methods in Psychobiology, Vol. 3, New York: Academic Press.Google Scholar
  24. 24.
    Myers, R. D. 1986. Development of push-pull systems for perfusion of anatomically distinct regions of the brain of the awake animal. Ann. N.Y. Acad. Sci. 473:21–41.PubMedGoogle Scholar
  25. 25.
    Myers, R. D., and Lee, T. F. 1984. Calmodulin-induced feeding in the cat: Attenuation by calcium chelator EGTA. Am. J. Physiol. 246:375–379.Google Scholar
  26. 26.
    Myers, R. D., and Lee, T. F. 1989. Neurochemical aspects of thermoregulation. Pages 161–203in Wang, L., (ed.), Advances in Comparative and Environmental Physiology, Vol. 4, Berlin: Springer-Verlag.Google Scholar
  27. 27.
    Myers, R. D., and Martin, G. E. 1973. 6-OHDA lesions of the hypothalamus: Interaction of aphagia, food palatability, set-point for weight regulation, and recovery of feeding. Pharmacol. Biochem. Behav. 1:329–345.PubMedCrossRefGoogle Scholar
  28. 28.
    Myers R. D., and Ruwe, W. D. 1978. Thermoregulation in the rat: Deficits following 6-OHDA injections in the hypothalamus. Pharmacol. Biochem. Behav. 8:377–385.PubMedCrossRefGoogle Scholar
  29. 29.
    Myers, R. D., Lankford, M. F., and Paez, X. 1992. Norepinephrine, dopamine and 5-HT release from perfused hypothalamus of the rat during feeding induced by neuropeptide Y. Neurochemical Res. 17:1123–1132.CrossRefGoogle Scholar
  30. 30.
    Myers, R. D., Melchior, C. L., and Gisolfi, C. V. 1976. Feeding and body temperature in the rat: Diencephalic localization of changes produced by excess calcium ions. Brain Res. Bull. 1:33–46.PubMedCrossRefGoogle Scholar
  31. 31.
    Myers, R. D., Peinado, J. M., and Miñano, F. J. 1988. Monoamine transmitter activity in lateral hypothalamus during its perfusion with insulin or 2-DG in sated and fasted rat. Physiol. Behav. 44(4):633–643.PubMedCrossRefGoogle Scholar
  32. 32.
    Myers, R. D., Swartzwelder, H. S., Peinado, J. M., Lee, T. F., Hepler, J., Denbow, R. M., and Ferrer, J. M. R. 1986. CCK and other peptides modulate hypothalamic norepinephrine release in the rat: Dependence on hunger or satiety. Brain Res. Bull. 17:583–597.PubMedCrossRefGoogle Scholar
  33. 33.
    Paez, X., and Myers, R. D. 1991. Insatiable feeding evoked in rats by recurrent perfusion of neuropeptide Y in the hypothalamus. Peptides 12:609–616.PubMedCrossRefGoogle Scholar
  34. 34.
    Paxinos, G., and Watson, C. 1986. The rat brain in stereotaxic coordinates. Sydney: Academic Press.Google Scholar
  35. 35.
    Roscoe, A. K., and Myers, R. D. 1991. Hypothermia and feeding induced simultaneously in rats by perfusion of neuropeptide Y in preoptic area. Pharmacol. Biochem. Behav. 39:1003–1009.PubMedCrossRefGoogle Scholar
  36. 36.
    Ruiz De Elvira, M. C., and Coen, C. W. 1990. Centrally administered neuropeptide Y enhances the hypothermia induced by peripheral administration of adrenoceptor antagonists. Peptides 11: 963–967.PubMedCrossRefGoogle Scholar
  37. 37.
    Ruwe, W. D., and Myers, R. D. 1978. Dopamine in the hypothalamus of the cat: Pharmacological characterization and push-pull perfusion analysis of sites mediating hypothermia. Pharmacol. Biochem. Behav. 9:65–80.PubMedCrossRefGoogle Scholar
  38. 38.
    Salin, P., Kerkerian, L., and Nieoullon, A. 1990. Expression of neuropeptide Y immunoreactivity in the rat nucleus accumbens is under the influence of the dopaminergic mesencephalic pathway. Brain Res. 81:363–371.Google Scholar
  39. 39.
    Schlicker, E., Gross, G., Fink, K., Glaser, T., and Göthert, M. 1991. Serotonin release in the rat brain cortex is inhibited by neuropeptide Y but not affected by ACTH1–24, angiotensin II, bradykinin and delta-sleep-inducing peptide. Naunyn-Schmiedeberg’s Arch. Pharmacol. 343:117–122.CrossRefGoogle Scholar
  40. 40.
    Shimizu, H., and Bray, G. A. 1989. Effects of neuropeptide Y on norepinephrine and serotonin metabolism in rat hypothalamus in vitro. Brain Res. Bull. 22:945–950.PubMedCrossRefGoogle Scholar
  41. 41.
    Stanley, B. G. Neuropeptide Y in multiple hypothalamic sites controls eating behavior, endocrine, and autonomic systems for body energy balance. Pages 457–509in Wahlestedt, C., Colmers, W., (eds.) The biology of Neuropeptide Y and related peptides. Totowa, NJ: Humana.Google Scholar
  42. 42.
    Szreder, Z., Hori, T., and Kaizuka, Y. 1994. Thermoregulatory effect of intracerebral injections of neuropeptide Y in rats at different environmental temperatures. Gen. Pharmac. 25:85–91.Google Scholar
  43. 43.
    Tsuda, K., Tsuda, S., Goldstein, M., and Masuyama, Y. 1990. Effects of neuropeptide Y on norepinephrine release in hypothalamic slices of spontaneously hypertensive rats. Eur. J. Pharmacol. 182:175–179.PubMedCrossRefGoogle Scholar
  44. 44.
    Wahlestedt, C., and Reis, D. 1993. Neuropeptide Y-related peptides and their receptors-are the receptors potential therapeutic drug targets? Ann. Rev. Pharmacol. Toxicol. 32:309–352.CrossRefGoogle Scholar
  45. 45.
    Yokoo, H., Schlesinger, D. H., and Goldstein, M. 1987. The effect of neuropeptide Y (NPY) on stimulation-evoked release of [3H] norepinephrine (NE) from rat hypothalamic and cerebral cortical slices. Eur. J. Pharmacol. 143:283–286.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • R. D. Myers
    • 1
  • M. F. Lankford
    • 1
  • A. K. Roscoe
    • 1
  1. 1.Departments of Pharmacology and Psychiatric Medicine, School of MedicineEast Carolina UniversityGreenville

Personalised recommendations