Neurochemical Research

, Volume 21, Issue 4, pp 403–409 | Cite as

Expression of a unique globo-series glycolipid in cultured rat dorsal root ganglion neurons: Relationship with neuronal development

  • Shubhro Pal
  • John W. Bigbee
  • Megumi Saito
  • Toshio Ariga
  • Robert K. Yu
Original Articles


Previous studies from this laboratory demonstrated the presence of a UDP-galactose:Gb3Cer α1-3galactosyltansferase activity responsible for the synthesis of a unique glycosphingolipid (GSL), Galα1-3Gb3Cer, in cultured PC12 pheochromocytoma cells (21). In this investigation, we examined the presence of this enzyme activity in isolated rat embryonic dorsal root ganglion neurons (DRGN), which, like pheochromocytoma cells, originate from the neural crest cells. DRGN exhibited the α-galactosyltransferase activity and the activity was comparable to that of the PC12 cells while several other rat tissues, with the exception of kidney, showed minimal activity. In order to define the spatial and temporal expression of Galα1-3Gb3Cer in DRGN, we examined the expression of Galα1-3Gb3Cer in cultured DRGN derived from embryonic day 16 rat embryos. Using a polyclonal antibody raised against Galα1-3Gb3Cer, we examined the localization of this glycolipid in DRGN cells after, 5, 8, 12, and 15 days in culture. Immunostaining was restricted to the neurons while Schwann cells were negative. At day 5, the immunostaining was weak and confined to the cell body of the DRGN, though neurites were present at this stage. The period between days 5 and 15 represented a period of rapid neuritic growth and continued enlargement of the cell bodies. Immunoreactivity in the cell bodies increased dramatically by day 8. By day 12, immunoreactivity was present in neurites, and by day 15, was strong in both cell bodies and neurites. The expression of Galα1-3Gb3Cer in vivo was confirmed by immunostaining of frozen sections of dorsal root ganglia. Our present studies which demonstrate neuron-specific expression of Galα1-3Gb3Cer during neurotigenesis combined with previous observations for its expression in PC12 cells, strongly implicates this GSL in neuronal development.

Key words

Glycosphingolipid dorsal rest ganglion neuronal development 

List of Abbreviations




Highperformance thin-layer chromatography




Nerve growth factor


Dorsal root ganglion


Uridine 5′-diphosphate


Cytidine 5′-diphosphate










Phosphate buffered saline


Glial fibrillary acidic protein


Enzyme linked immunosorbent assay


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ariga, T., Yu, R. K., Scarsdale, J. N., Suzuki, M., Kuroda, Y., Kitagawa, H., and Miyatake, T. 1988. Accumulation of a globoseries glycolipid having Galα1-3Gal in PC12h pheochromocytoma cells. Biochemistry 27:5335–5340.PubMedCrossRefGoogle Scholar
  2. 2.
    Ariga, T., Suzuki, M., Yu, R. K., Kuroda, Y., Shimada, I., Inagaki, F., and Miyatake, T. 1989. Accumulation of unique globo-series glycolipids in PC12h pheochromocytoma cells. J. Biol. Chem. 264:1516–1521.PubMedGoogle Scholar
  3. 3.
    Ariga, T., Tao, R. V., Lee, B.-C., Yamawaki, M., Yoshino, H., Scarsdale, J. N., Kasama, T., Kushi, Y., and Yu, R. K. 1994. Glycolipid composition of human cataractous lenses. J. Biol. Chem. 269:2667–2675.PubMedGoogle Scholar
  4. 4.
    Begovac, P. C., and Shur, B. D. 1990. Cell surface galactosyltransferase mediates the initiation of neurite outgrowth from PC12 cells on laminin. J. Cell Biol. 110:461–470.PubMedCrossRefGoogle Scholar
  5. 5.
    Berti-Mattera, L. N., Larocca, J. N., Pellegrino de Iraldi, A., Pasquini, J. M., and Soto, E. F. 1984. Isolation of oligodendroglial cells from young and adult whole rat brain using an in situ generated Percoll density gradient. Neurochem. Int. 6:41–50.CrossRefPubMedGoogle Scholar
  6. 6.
    Doherty, P., Dickson, J. G., Flanigan, T. P., and Walsh, F. S. 1985. Ganglioside GM1 does not initiate, but enhances neurite regeneration of nerve growth factor-dependent sensory neurones. J. Neurochem. 44:1259–1265.PubMedCrossRefGoogle Scholar
  7. 7.
    Dupree, J. L., and Bigbee, J. W. 1994. Retardation of neuritic outgrowth and cytoskeletal changes accompany acetylcholine esterase inhibitor treatment in cultured rat dorsal root ganglion neurons. J. Neurosci. Res. 39:567–575.PubMedCrossRefGoogle Scholar
  8. 8.
    Folch, J., Lees, M. B., and Sloane-Stanley, G. M. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226:497–509.PubMedGoogle Scholar
  9. 9.
    Hakomori, S.-i. 1990. Bifunctional role of glycosphingolipids: Modulators for transmembrane signalling and mediators for cellular interactions. J. Biol. Chem. 265:18713–18716.PubMedGoogle Scholar
  10. 10.
    Hakomori, S.-i. 1994. Control by glycosphingolipids of cell growth, cell adhesion, and transmembrane signaling. In: Glycobiology and the Brain. (Nicolini, M., and Zatta, P. F., Eds.), pp. 83–95, Pergamon Press, Oxford.Google Scholar
  11. 11.
    Hendricks, S. P., He, P., Stults, C. L., and Macher, B. A. (1990). Regulation of the expression of Galα1-3Galβ1-4GlcNAc glycos-pingolipids in kidney. J. Biol. Chem. 265:17621–17626.PubMedGoogle Scholar
  12. 12.
    Kanda, T., Yoshino, H., Ariga, T., Yamawaki, M., and Yu, R. K. 1994. Glycosphingolipid antigens in cultured microvascular bovine brain endothelial cells: sulfoglucuronosyl paragloboside as a target of monoclonal IgM in demyelinating neuropathy. J. Cell Biol. 126:235–246.PubMedCrossRefGoogle Scholar
  13. 13.
    Kanda, T., Ariga, T., Yamawaki, M., Pal, S., Katoh-Semba, R., and Yu, R. K. 1995. Effect of nerve growth factor and forskolin on glycosyltransferase activities and expression of a globo-series glycosphingolipid in PC12D pheochromocytoma cells. J. Neurochem. 64:810–817.PubMedCrossRefGoogle Scholar
  14. 14.
    Kohriyama, T., Ariga, T., and Yu, R. K. 1988. Preparation and characterization of antibodies against a sulfated glucuronic acidcontaining glycosphingolipid. J. Neurochem. 51:869–877.PubMedCrossRefGoogle Scholar
  15. 15.
    Knyihar-Csillik E., Csillik B., and Oestreicher A. B. 1992. Light and electron microscopic localization of B-50 (GAP43) in the rat spinal cord during transganglionic degenerative atrophy and regeneration. J. Neurosci. Res. 32:93–109.PubMedCrossRefGoogle Scholar
  16. 16.
    Kojima, N., and Hakomori, S. 1991. Synergistic effect of two cell recognition systems: glycosphingolipid-glycosphingolipid interaction and integrin receptor interaction with pericellular matrix protein. Glycobiology, 1:623–630.PubMedGoogle Scholar
  17. 17.
    Ledeen, R. W. 1989. Biosynthesis, metabolism, and biological effects of gangliosides. Pages 43–83,in Margolis, R. U., and Margolis, R. K., (eds.), Neurobiology of Glycoconjugates. Plenum, New York.Google Scholar
  18. 18.
    McCarthy, K. D., and de Villis J. 1980. Preparation of separate astroglial and oligodendroglial cultures from rat cerebral tissue. J. Cell Biol. 85:980–982.CrossRefGoogle Scholar
  19. 19.
    Meyerson G., Pfenninger, K. H., and Pahlman, S. 1992. A complex consisting of pp60c-btc/pp60c-arcN and a 38 kDa protein is highly enriched in growth cones from differentiated SH-SY5Y neuroblastoma cells. J. Cell Sci. 103:233–243.PubMedGoogle Scholar
  20. 20.
    Pal, S., Saito, M., Ariga, T., and Yu, R. K. 1992. UDP-galactose: globotriaosylceramide α-galactosyltransferase activity in rat pheochromocytoma (PC12h) cells. J. Lipid Res. 33:411–417.PubMedGoogle Scholar
  21. 21.
    Pal, S., Saito, M., Bigbee, J. W., Ariga, T., and Yu, R. K. 1993. Galactosyltransferase activity in rat dorsal root ganglia. Trans. Amer. Soc. Neurochem., 24:198.Google Scholar
  22. 22.
    Rock, P., Allietta, M., Young, W. W. Jr., Thompson, T. E., Tillack, T. W. 1990. Organization of glycosphingolipids in phosphatidylcholine bilayers: use of antibody molecules and Fab fragments as morphologic markers. Biochemistry, 29:8484–8490.PubMedCrossRefGoogle Scholar
  23. 23.
    Rock, P., Allietta, M., Young, W. W. Jr., Thompson, T. E., Tillack, T. W. 1991. Ganglioside GM1 and asialo-GM1 at low concentration are preferentially incorporated into the gel phase in two-component, two phase phosphatidylcholine bilayers. Biochemistry, 30:19–25.PubMedCrossRefGoogle Scholar
  24. 24.
    Sato, C., Black, J. A., and Yu, R. K. 1988. Subcellular distribution of UDP-galactose:ceramide galactosyltransferase in rat brain oligodendroglia. J. Neurochem. 50:1887–1893.PubMedCrossRefGoogle Scholar
  25. 25.
    Sbaschnig-Agler, M., Pfenninger, K. H., and Ledeen, R. W. 1988. Gangliosides and other lipids of the growth cone membrane. J. Neurochem. 51:212–220.PubMedCrossRefGoogle Scholar
  26. 26.
    Shea, T. B., Perrone-Bizzozero, N. I., Beermann, M. L., and Benowitz, L. I. 1991. Phospholipid-mediated delivery of anti-GAP-43 antibodies into neuroblastoma cells prevents neuritogenesis. J. Neurosci. 11:1685–1690.PubMedGoogle Scholar
  27. 27.
    Yoshino, H., Ariga, T., Latov, N., Miyatake, T., Kushi, Y., Kasama, T., Handa, S., and Yu, R. K. 1993. Fucosyl-GM1 in human sensory nervous tissue is a target antigen in patients with autoimmune neuropathies. J. Neurochem. 61:658–663.PubMedCrossRefGoogle Scholar
  28. 28.
    Yu, R. K. 1994. Development regulation of ganglioside metabolism. Progr. Brain Res. 101:31–44.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Shubhro Pal
    • 1
  • John W. Bigbee
    • 2
  • Megumi Saito
    • 1
  • Toshio Ariga
    • 1
  • Robert K. Yu
    • 1
  1. 1.Department of Biochemistry and Molecular BiophysicsVirginia Commonwealth UniversityRichmond
  2. 2.Department of Anatomy, Medical College of VirginiaVirginia Commonwealth UniversityRichmond

Personalised recommendations