Neurochemical Research

, Volume 21, Issue 1, pp 41–46 | Cite as

Cyclic GMP-phosphodiesterase inhibition does not alter cerebral oxygen consumption

  • Hwu Meei Wei
  • Abhijit J. Shah
  • James Tse
  • Oak Za Chi
  • Harvey R. Weiss


The effect of zaprinast, a cyclic guanosine monophosphate inhibitor, on the level of cyclic GMP and cerebral O2 consumption was determined. Anesthetized male Long-Evans rats were divided into a control group (n=15) and a zaprinast treated group (n=15). Vehicle was applied topically to the left cortex and 3·10−3 M zaprinast was applied to the right cortex. A saline treated control group was also studied. Regional cerebral blood flow was determined by [14C]-iodoantipyrine and regional O2 extraction was determined by microspectrophotometry. The level of cyclic GMP was measured by radioimmunoassay. There were no hemodynamic or blood gas differences between groups. The level of cyclic GMP was not significantly different between the right and left cerebral cortex of the control group (17.0±4.3 and 17.7±4.6 pmol/g). In the zaprinast treated group, there was a significant (46%) increase in the level of cyclic GMP in the zaprinast treated cortex (20.5±8.1) in comparison to the vehicle treated cortex (14.0±5.7). Zaprinast did not significantly alter cerebral blood flow. There were no significant differences in regional O2 extraction. The O2 consumption of the zaprinast treated cortex (8.0±3.3 ml O2·min−1·100 g−1) was not different from that of the vehicle treated cortex (7.0±2.9) or those of the control group. Thus, our data indicated that the increased level of cyclic GMP had no significant effect on cerebral oxygen consumption.

Key Words

Cyclic GMP-phosphodiesterase zaprinast cyclic GMP cerebral blood flow cerebral O2 consumption 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lincoln T. M., and Cornwell T. L. 1993. Intracellular cyclic GMP receptor protein. FASEB J. 7:328–338.PubMedGoogle Scholar
  2. 2.
    Hartzell H. C. 1988. Regulation of cardiac ion channels by catecholamines, acetylcholine and second messenger systems. Prog. Biophys. Molec. Biol. 52:165–247.CrossRefGoogle Scholar
  3. 3.
    Pandol S. J., and Schoeffield-Payne M. S. 1990. Cyclic GMP regulates free cytosolic calcium in the pancreatic acinar cell. Cell. Calcium. 11:477–486.PubMedCrossRefGoogle Scholar
  4. 4.
    Hyman A. L., Kadowitz P. J., and Lippton H. L. 1989. Methylene blue selectively inhibits pulmonary vasodilator responses in cats. J. Appl. Physiol. 66:1513–1517.PubMedCrossRefGoogle Scholar
  5. 5.
    Zhou H. L., and Torphy T. J. 1991. Relationship between cyclic guanosine monophosphate accumulation and relaxation of canine trachealis induced by nitrovasodilators. J. Pharmacol. Exp. Ther. 258:972–978.PubMedGoogle Scholar
  6. 6.
    Sagawa M., Koide T., and Takato M. 1992. BY-1949 elicits vasodilation via preferential elevation of cyclic GMP levels within the cerebral artery: possible involvement of endothelium-mediated mechanisms. Eur. J. Pharmacol. 215:57–62.CrossRefGoogle Scholar
  7. 7.
    Graser T., and Vanhoutte P. M. 1991. Hypoxic contraction of canine coronary arteries: role of endothelium and cGMP. Am. J. Physiol. 261:H1769–H1777.PubMedGoogle Scholar
  8. 8.
    Arnold W. P., Mittal C. K., Katsuki S., and Murad F. 1977. Nitric oxide activates guanylate cyclase and increases guanosine 3′5′-cyclic monophosphate levels in various tissue preparation. Proc. Natl. Acad. Sci. USA 74:3203–3207.PubMedCrossRefGoogle Scholar
  9. 9.
    Dirnagl U., Lindauer V., and Villringer A. 1993. Role of nitric oxide in the coupling of cerebral blood flow to neuronal activation in rats. Neurosci. Lett. 149:43–46.PubMedCrossRefGoogle Scholar
  10. 10.
    Goadsby P. J., Kaube H., and Hoskin K. L. 1992. Nitric oxide synthesis couples cerebral blood flow and metabolism. Brain Res. 595:167–170.PubMedCrossRefGoogle Scholar
  11. 11.
    Cotman C. W., Bridges R. J., Taube J. S., Clark A. S., Geddes J. W., and Monahan D. T. 1989. The role of NMDA receptors in central nervous system: plasticity and pathology. J. NIH Res. 1: 65–74.Google Scholar
  12. 12.
    Dawson V. L., Dawson T. M., London E. D., Bredt D. S., and Snyder S. H. 1992. A novel neuronal messenger molecule in the brain: the free radical nitric oxide. Ann. Neurol. 32:297–311.PubMedCrossRefGoogle Scholar
  13. 13.
    Lee T. P., Kuo J. F., and Greengard P. 1972. Role of muscarinic cholinergic receptors in regulation of guanosine 3′∶5′-cyclic monophosphate content in mammalian brain, heart muscle and intestinal smooth muscle. Proc. Natl. Acad. Sci. USA 69:3287–3291.PubMedCrossRefGoogle Scholar
  14. 14.
    Nishizaki T., and Okada Y. 1988. Effects of excitatory amino acids on the oxygen cosumption of hippocampal slices from guinea pig. Brain Res. 452:11–20.PubMedCrossRefGoogle Scholar
  15. 15.
    Frandsen A., Andersen C. F., and Schousboe A. 1992. Possible role of cGMP in excitatory amino acid induced cytotoxicity in cultured cortical neurons. Neurochem. Res. 17:35–43.PubMedCrossRefGoogle Scholar
  16. 16.
    Edelman G. M., and Gally J. A. 1992. Nitric oxide: linking space and time in the brain. Proc. Natl. Acad. Sci. USA 89:11651–11652.PubMedCrossRefGoogle Scholar
  17. 17.
    Iwamoto J., Yang S. P., Yoshinaga M., Krasney E., and Krasney J. 1992. NG-nitro-L-arginine influences cerebral metabolism in awake sheep. J. Appl. Physiol. 73:2233–2240.PubMedGoogle Scholar
  18. 18.
    Merkel L. A., Rivera L. M., Perrone M. H., and Lappe R. W. 1992. In vitro and in vivo interactions of nitrovasodilators and zaprinast a cGMP-selective phosphodiesterase inhibitor. Eur. J. Pharmacol. 216:29–35.PubMedCrossRefGoogle Scholar
  19. 19.
    Weiss H. R., Rodriguez E., Tse J., and Scholz P. M. 1994. Effect of increased myocardial cyclic GMP induced by cyclic GMP-phosphodiesterase inhibition on oxygen consumption and supply of rabit hearts. Clin. Exp. Pharmacol. Physiol. 21:607–614.PubMedGoogle Scholar
  20. 20.
    McMahon E. G., Palomo M. A., Mehta P., and Olins G. M. 1989. Depressor and natriuretic effects of M&B 22948 a guanosine cyclic 3′5′-monophosphate-selective phosphodiesterase inhibitor. J. Pharmacol. Exp. Ther. 251:1000–1005.PubMedGoogle Scholar
  21. 21.
    Trapani A. J., Smits G. J., McGraw D. E., McMahon E. G., and Blaine E. H. 1991. Hemodynamic basis for the depressor activity of zaprinast a selective cyclic GMP-phosphodiesterase inhibitor. J. Pharmacol. Exp. Ther. 258:269–274.PubMedGoogle Scholar
  22. 22.
    Sakurada O., Kennedy C., Jehle J., Brown J. D., Carbin O. L., and Sokoloff L. 1978. Measurement of local cerebral blood flow with [14C]-iodoantipyrine. Am. J. Physiol. 234:H59–H66.PubMedGoogle Scholar
  23. 23.
    Zhu N., and Weiss H. R. 1991. Oxy- and carboxyhemoglobin saturation in frozen small vessels. Am. J. Physiol. 260:H626–H631.PubMedGoogle Scholar
  24. 24.
    Tse J., Bracket N. L., and Kuo J. F. 1978. Alterations in activities of cyclic nucleotide systems in beta-adrenergic receptor-mediated activation of cAMP-dependent protein kinase during progression and regression of isoproterenol-induced cardiac hypertrophy. Biochem. Biophys. Acta. 542:399–411.PubMedGoogle Scholar
  25. 25.
    Komas N., Le Bec A., Stoclet J. C., and Lugnier C. 1991. Cardiac cGMP-stimulated cyclic nucleotide phosphodiesterase: effects of cGMP analogues and drugs. Eur. J. Pharmacol. 103:1973–1979.Google Scholar
  26. 26.
    Richards M. H. 1991. Pharmacology and second messenger interactions of cloned muscarinic receptors. Biochem. Pharmacol. 42: 1645–1653.PubMedCrossRefGoogle Scholar
  27. 27.
    Luo D., Leung E., and Vincent S. R. 1994. Nitric oxide-dependent efflux of cGMP in rat cerebellar cortex: an in vivo microdialysis study. J. Neurosci. 14:263–271.PubMedGoogle Scholar
  28. 28.
    Harvey B., Carstens M., and Taljaard J. 1993. Absence of an effect of the lithium-induced increase in cyclic GMP on the cyclic GMP-stimulated phosphodiesterase (PDE II) Evidence for cyclic AMP-specific hydrolysis. Neurochem. Res. 18:1095–1100.PubMedCrossRefGoogle Scholar
  29. 29.
    Murashima S., Tanaka T., Hockman S., and Manganiello V. 1990. Characterization of particulate cyclic nucleotide phosphodiesterases from bovine brain: purification of a distinct cGMP-stimulated isoenzyme. Biochem. 29:5285–5292.CrossRefGoogle Scholar
  30. 30.
    Agullo L., and Garcia A. 1992. Different receptors mediate stimulation of nitric oxide-dependent cyclic GMP formation in neurons and astrocytes in culture. Biochem. Biophys. Res. Commun. 182:1362–1368.PubMedCrossRefGoogle Scholar
  31. 31.
    Garthwaite J., Charles S. L., and Chess-Williams R. 1988. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 336:385–388.PubMedCrossRefGoogle Scholar
  32. 32.
    Kurumaji A., and McCulloch J. 1989. Effect of MK-801 upon local cerebral glucose utilization in conscious rats and in rats an-aesthetized with halothane. J. Cereb. Blood Flow Metab. 9:786–794.PubMedGoogle Scholar
  33. 33.
    Lu X., Yospin J., Wei H. M., and Weiss H. R. 1995. Effect of nitroprusside on cerebral regional cGMP blood flow and oxygen consumption in rat. FASEB J. 8:A27.Google Scholar
  34. 34.
    Chi, O. Z., Anwar M., Sinha A. K., Wei H. M., Klein, S. L., and Weiss H. R. 1992. Effect of isoflurane on transport across the blood-brain barrier. Anesthesiol. 76:426–431.CrossRefGoogle Scholar
  35. 35.
    Sinha, A. K., Chi, O. Z., and Weiss H. R. 1992. Effect of pentobarbital on cerebral regional venous O2 saturation heterogeneity. Brain Res. 591:146–150.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Hwu Meei Wei
    • 1
  • Abhijit J. Shah
    • 1
  • James Tse
    • 1
  • Oak Za Chi
    • 1
  • Harvey R. Weiss
    • 1
  1. 1.Heart and Brain Circulation Laboratory, Department of Physiology and BiophysicsUMDNJ-Robert Wood Johnson Medical SchoolPiscataway

Personalised recommendations