Skip to main content
Log in

Glutathione depletion is accompanied by increased neuronal nitric oxide synthase activity

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The effect of glutathione depletion, in vivo, on rat brain nitric oxide synthase activity has been investigated and compared to the effect observed in vitro with cultured neurones. Using L-buthionine sulfoximine rat brain glutathione was depleted by 62%. This loss of glutathione was accompanied by a significant increase in brain nitric oxide synthase activity by up to 55%. Depletion of glutathione in cultured neurones, by approximately 90%, led to a significant 67% increase in nitric oxide synthase activity, as judged by nitrite formation, and cell death. It is concluded that depletion of neuronal glutathione results in increased nitric oxide synthase activity. These findings may have implications for our understanding of the pathogenesis of neurodegenerative disorders in which loss of brain glutathione is considered to be an early event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bredt, D. S. and Snyder, S. H. 1989. Nitric oxide mediates glutamate linked enhancement of cGMP levels in the cerebellum. Proc. Natl. Acad. Sci. USA, 86:9030–9033.

    Article  PubMed  CAS  Google Scholar 

  2. Dawson, V. L., Dawson, T. M., London, E. D., Bredt, D. S. and Snyder, S. H. 1991. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc. Natl. Acad. Sci. USA, 88:6368–6371.

    Article  PubMed  CAS  Google Scholar 

  3. Johnson, A. W., Land, J. M., Thompson, E. J., Bolaños, J. P., Clark, J. B., and Heales, S. J. R. 1995. Evidence for increased nitric oxide production in multiple sclerosis. J. Neurol. Neurosurg. Psych., 58:107.

    Article  CAS  Google Scholar 

  4. Bolaños, J. P., Peuchen, S. P., Heales, S. J. R., Land, J. M., and Clark, J. B. 1994. Nitric oxide-mediated inhibition of the mitochondrial respiratory chain in cultured astrocytes. J. Neurochem., 63:910–916.

    Article  PubMed  Google Scholar 

  5. Bolaños, J. P., Heales, S. J. R., Land, J. M., and Clark, J. B. 1995. Effect of peroxynitrite on the mitochondrial respiratory chain: Differential suceptibility of neurones and astrocytes in primary culture. J. Neurochem., 64:1965–1972.

    Article  PubMed  Google Scholar 

  6. Knowles, R. G., and Moncada, S. 1994. Nitric oxide synthases in mammals. Biochem. J., 298:249–258.

    PubMed  CAS  Google Scholar 

  7. Stuehr, D. J., Kwon, N. S., and Nathan, C. F. 1990. FAD and GSH participate in macrophage synthesis of nitric oxide. Biochem. Biophys. Res. Commun., 168:558–565.

    Article  PubMed  CAS  Google Scholar 

  8. Giovenelli, J., Campos, K. L., and Kaufman, S. 1991. Tetraydrobiopterin, a cofactor for rat cerebellar nitric oxide synthase, does not function as a reactant in the oxygenation of arginine. Proc. Natl. Acad. Sci. USA, 88:7091–7095.

    Article  Google Scholar 

  9. DiMonte, D. A., Chan, P., and Sandy, M. S. 1992. Glutathione in Parkinson’s Disease: A link between oxidative stress and mitochondrial damage? Ann. Neurol. 32:S111–115.

    Article  Google Scholar 

  10. Meister, A. and Larsson, A. (1989) Glutathione synthetase deficiency and other disorders of the γ-glutamyl cycle. Pages 855–868.In C. R. Scriver C. R., Beaudet A. L., Sly W. S., and Valle D. (Eds). The Metabolic Basis of Inherited Disease, McGraw-Hill, New York.

    Google Scholar 

  11. Cho, E. I., Sahyoun, N. and Stegink, L. D. 1981. Tissue glutathione as a cyst(e)ine reservoir during fasting and refeeding of rats. J. Nutr., 111:914–922.

    PubMed  CAS  Google Scholar 

  12. Squadrito, F., Calapai, G., Altavilla, D., Cucinotta, D., Zingarelli, B., Campo, G. M., Arcoraci, V., Sautebin, L., Mazzaglia, G., and Caputi, A. P. 1994. Food deprivation increases brain nitric oxide synthase and depresses brain serotonin levels in rats. Neuropharmacol., 33:83–86.

    Article  CAS  Google Scholar 

  13. Jain, A., Martensson, J., Stole, E., Auld, P. A. M., and Meister, A. 1991. Glutathione deficiency leads to mitochondrial damage in brain. Proc. Natl. Acad. Sci. USA., 88:1913–1917.

    Article  PubMed  CAS  Google Scholar 

  14. Heales, S. J. R., Davies, S. E. C., Bates, T. E. and Clark, J. B. 1995. Depletion of brain glutathione is accompanied by impaired mitochondrial function and decreased N-acetyl aspartate concentration. Neurochem. Res., 20:31–38.

    Article  PubMed  CAS  Google Scholar 

  15. Tabermero, A., Bolaños, J. P., and Medina, J. M. 1993. Lipogenesis from lactate in rat neurones and astrocytes in primary culture Biochem. J., 294:635–638.

    Google Scholar 

  16. Riederer, P., Sofic, E., Rausch, W.-D., Schmidt, B., Reynolds, G. P., Jellinger, K., and Youdim M. B. H. 1989. Transition metals, ferritin, glutathione and ascorbic acid in Parkinsonian brains. J. Neurochem., 52:512–520.

    Article  Google Scholar 

  17. Hyland, K., Smith, I., Howells, D. W., Clayton, P. T. and Leonard, J. V. 1985. The determination of pterins, biogenic amine metabolites and aromatic amino acids in cerebrospinal fluid using isocratic reverse phase liquid chromatography with in series dual cell coulometric electrochemical detection and florescence detection: Use in the study of inborn errors of dihydropteridine reductase and 5, 10 methylenetetrahydrofolate reductase. Pages 85–99.in H. Wachter, H. Ch. Curtius and W. Pfleiderer (eds), Biochemical and Clinical Aspects of Pteridines, Vol. 4, De Gruyter, Berlin.

    Google Scholar 

  18. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and randall, R. J. 1951. Protein measurement with Folin phenol reagent. J. Biol. Chem., 193:265–275.

    PubMed  CAS  Google Scholar 

  19. Griscavage, J. M., Fukuto, J. M., Komori, Y. and Ignarro, L. J. 1994. Nitric oxide inhibits neuronal nitric oxide by interacting with the heme prosthetic group. J. Biol. Chem., 269:21644–21649.

    PubMed  CAS  Google Scholar 

  20. Hevel, J. M. and Marletta, M. A. 1994. Nitric oxide synthase assays. Methods in Enzymology., 233:250–258.

    Article  PubMed  CAS  Google Scholar 

  21. Klatt, P., Schmid, M., Leopold, E., Schmidt, K., Werner, E. R. and Mayer, B. 1994. The pteridine binding site of brain nitric oxide synthase. J. Biol. Chem., 269:13861–13866.

    PubMed  CAS  Google Scholar 

  22. Ratan, R. R., Murphy, T. H., and Baraban, J. M. 1994. Macromolecular synthesis inhibitors prevent oxidative stress induced apoptosis in embryonic cortical neurons by shunting cysteine from protein synthesis to glutathione. J. Neurosci., 14:4385–4392.

    PubMed  CAS  Google Scholar 

  23. Herdegen, T., Brecht, S., Mayer, B., Leah, J., Kummer, W., Bravo, R. and Zimmerman, M. 1993. Long lasting expression of jun and krox transcription factors and nitric oxide synthase in intrinsic neurones of the rat brain following axotomy. J. Neurosci., 13:4130–4145.

    PubMed  CAS  Google Scholar 

  24. Verge, V. M. K., Xu, Z., Xu, X. J., Wiesenfeldhallin, Z. and Hokfelt, T. 1992. Marked increase in nitric oxide synthase messenger RNA in rat dorsal root ganglia after peripheral axotomyin situ hybridisation and functional studies. Proc. Natl. Acad. Sci. USA., 89:11616–11621.

    Article  Google Scholar 

  25. Jenner, P., Dexter, D. T., Sian, J., Schapira, A. H. V., and Marsden C. D. 1992. Oxidative stress as a cause of nigral cell death in Parkinson’s Disease and incidental Lewy body disease. Ann. Neurol. 32:S82–87.

    Article  Google Scholar 

  26. Schapira, A. H. V., Cooper, J. M., Dexter, D., Clark, J. B., Jenner, P., and Marsden, C. D. 1990. Mitochondrial complex I deficiency in Parkinson’s Disease. J. Neurochem., 54:823–827.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heales, S.J.R., Bolaños, J.P. & Clark, J.B. Glutathione depletion is accompanied by increased neuronal nitric oxide synthase activity. Neurochem Res 21, 35–39 (1996). https://doi.org/10.1007/BF02527669

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02527669

Key words

Navigation