Neurochemical Research

, Volume 21, Issue 1, pp 27–33 | Cite as

Enhanced lipid peroxidation by extracellular ATP in PC12 cells

  • Y. Cheng
  • M. Chen
  • M. James-Kracke
  • P. Wixom
  • A. Y. Sun
Article

Abstract

Recently we have demonstrated that extracellular ATP acts as an excitatory neurotransmitter and enhances cell death in the presence of ferrous ions. By using a newly developed cis-parinaric acid fluorescence technique, we demonstrated that ATP, in a dose dependent manner, enhanced the increased membrane lipid peroxidation in PC12 cells when cells were incubated with micromolar FeCl2/DTP. P2 purinoceptor agonists, α,β-methylene ATP and 2-methylthio-ATP, induced PC12 cell lipid peroxidation, but to a lesser extent than ATP. ATP-induced Ca2+ influx via P2 purinoceptor activation significantly increased the intracellular Ca2+ concentration, which may have triggered a free radical generating cascade(s), and led to membrane lipid peroxidation and cell death. Since oxidative stress has been implicated in certain neurodegenerative diseases such as aging, extracellular ATP may contribute to neuronal cell death by an oxidative mechanism involving lipid peroxidation.

Key words

cis-Parinaric acid lipid peroxidation PC12 cells purinoceptor extracellular ATP reactive oxygen intermediates 

Abbreviations used

α,β-metATP

α,β-methylene ATP

2-mtATP

2-methylthioATP

DTP

diethylenetramine pentaacetic acid

RB-2

Reactive Blue 2

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zanovello, P., Bronte, V., Rosato, A., Pizzo, P., and Di Virgilio, F. 1990. I. Responses of mouse lymphocytes to extracellular ATP II. Extracellular ATP causes cell type-dependent lysis, and DNA fragmentation, J. Immunol. 145:1545–1550.PubMedGoogle Scholar
  2. 2.
    Steinberg, T. H., and DiVirgilio, F. 1991. Cell-mediated cytotoxicity: ATP as an effector and the role of target cells. Curr. Opinion Immunol. 3:71–75.CrossRefGoogle Scholar
  3. 3.
    Zheng, L. M., Zychlinsky, A., Liu, C-C., Ojcius, D. M., and Young, J. D. 1991. Extracellular ATP as a trigger for apoptosis or programmed cell death. J. Cell Biol. 112:279–288.PubMedCrossRefGoogle Scholar
  4. 4.
    Murgia, M., Pizzo, P., Steinberg, T. H., and Di Virgillio, F. 1992. Characterization of the cytotoxic effect of extracellular ATP in J774 mouse macrophages. Biochem. J. 288:897–901.PubMedGoogle Scholar
  5. 5.
    Zoeteweij, J. P., Von De Water, B., De Bont, H. J. G. M., Mulder, G. J., and Nagelkerke, J. F. 1992. Involvement of intracellular Ca2+ and K+ in dissipation of the mitochondrial membrane potential and cell death induced by extracellular ATP in hepatocytes. Biochem. J. 288:207–213.PubMedGoogle Scholar
  6. 6.
    Cheng, Y., Wixom, P., James-Kracke, M. R., and Sun, A. Y. 1994. Effects of extracellular ATP on Fe2+-induced cytotoxicity in PC12 cells. J. Neurochem. 63:895–902.PubMedCrossRefGoogle Scholar
  7. 7.
    Burnstock, G., and Kennedy, C. 1985. Is there a basis for distinguishing two types of P2-purinoceptor? Gen. Pharmacol. 16:433–440.PubMedGoogle Scholar
  8. 8.
    Bean, B. P. 1992. Pharmacology and electrophysiology of ATP-activated ion channels. Trends Pharmacol. Sci. 13:87–90.PubMedCrossRefGoogle Scholar
  9. 9.
    Sun, A. Y., Yang, W. L., and Kim, H. D. 1993. Free radical and lipid peroxidation in manganese-induced neuronal cell injury. Annals NY Acad. Sci. 679:358–363.Google Scholar
  10. 10.
    Bergmeyer, H. U. and Bernt, E. 1974. Lactate Dehydrogenase. Pages 574–589in Bergmeyer, H. U. (ed) Methods of Enzymatic Analysis, Academic Press, Inc., New York.Google Scholar
  11. 11.
    Henley, D., and Chow, S. 1992. Flow cytometric measurement of lipid peroxidation in vital cells using parinaric acid. Cytometry 13:686–692.CrossRefGoogle Scholar
  12. 12.
    Emmendorffer, A., Hecht, M., Lohmann-Matthes, M-L., and Roesler, J. 1990. A fast and easy method to determine the production of reactive oxygen intermediates by human and murine phagocytes using dihydrorhodamine 123. J. Immunol. Methods 131:269–275.PubMedCrossRefGoogle Scholar
  13. 13.
    McGuire, S., James-Kracke, M., and Fritsche, K. 1995. A novel method for observing real time differences in membrane lipid oxidation. Faseb J. 9:A143.Google Scholar
  14. 14.
    Gutteridge, J. M. C., and Halliwell, B. 1990. The measurement and mechanisms of lipid peroxidation in biological systems. Trends Biochem. Sci. 15:129–135.PubMedCrossRefGoogle Scholar
  15. 15.
    Steinberg, T. H., and Silverstein, S. C. 1989. ATP permeabilization of the plasma membrane. Methods Cell Biol. 31:45–61.PubMedGoogle Scholar
  16. 16.
    Dubyak, G. R. 1991. Signal transduction by P2-purinergic receptors for extracellular ATP. Am. J. Respir. Cell Mol. Biol. 4:295–300.PubMedGoogle Scholar
  17. 17.
    Zoeteweij, J. P., Von De Water, B., De Bont, H. J. G. M., Mulder, G. J., and Nagelkerke, J. F. 1993. Calcium-induced cytotoxicity in hepatocytes after exposure to extracellular ATP is dependent on inorganic phosphate. J. Biol. Chem. 268:3384–3388.PubMedGoogle Scholar
  18. 18.
    Nakazawa, K., Fujimori, K., Takanaka, A., and Inoue, K. 1990. An ATP-activated conductance in pheochromocytoma cells and its suppression by extracellular calcium. J. Physiol. 428:257–272.PubMedGoogle Scholar
  19. 19.
    Fieber, L. A., and Adams, D. J. 1991. Adenosine triphosphate-evoked currents in cultured neurons dissociated from rat parasympathetic cardiac ganglia. J. Physiol. 434:239–256.PubMedGoogle Scholar
  20. 20.
    Brake, A. J., Wagenbach, M. J., and Julius, D. 1994. New structural motif for ligand-gated ion channels defined by anionotropic ATP receptor. Nature 371:519–523.PubMedCrossRefGoogle Scholar
  21. 21.
    Nicotera, P., Bellomo, G., and Orrenius, S. 1992. Calcium-mediated mechanisms in chemically induced cell death. Annu. Rev. Pharmacol. Toxicol. 32:449–70.PubMedCrossRefGoogle Scholar
  22. 22.
    Choi, D. W., and Hartley, D. M. 1993. Calcium and glutamate-induced neuronal death. Research Publications—Assoc. for Research In Nervous and Mental Disease 71:23–34.Google Scholar
  23. 23.
    Rothe, G., Oser, A., and Valet, G. 1988. Dihydrorhodamine 123: a new flow cytometric indicator for respiratory burst activity in neutrophil granulocytes. Naturwissenschaften 75:354.PubMedCrossRefGoogle Scholar
  24. 24.
    Burkitt, M. J., and Gilbert, B. C. 1990. Model studies of the ironcatalyzed Haber-Weiss cycle and the ascorbate-driven Fenton reaction. Free Radical Res. Commun. 10:265–80.CrossRefGoogle Scholar
  25. 25.
    Burnstock, G., 1986. The changing face of autonomic transmission. Acta Physiol. Scand. 126:76–91.CrossRefGoogle Scholar
  26. 26.
    Von Kugelgen, I., Allgaier, C., Schubert, A., and Starke, K. 1994. Co-release of noradrenaline and ATP from cultured sympathetic neurons. Neuroscience 61:199–202.CrossRefGoogle Scholar
  27. 27.
    Richardson, P. J., and Brown, S. J. 1989. ATP release from affinity purified rat cholinergic nerve terminals. J. Neurochem. 48:622–630.CrossRefGoogle Scholar
  28. 28.
    Von Kugelgen, I., and Starke, K. 1994. Co-release of noradrenaline and ATP by brief pulse trains in guinea pig vas deferens. Naunyn-Schmiedeberg Arch. Pharmacol. 350:123–129.CrossRefGoogle Scholar
  29. 29.
    Kornecki, E., and Ehrlich, Y. 1991. Calcium ion mobilization in neuronal cells induced by PAF. Lipids 26:1243–1246.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Y. Cheng
    • 1
  • M. Chen
    • 1
  • M. James-Kracke
    • 1
  • P. Wixom
    • 1
  • A. Y. Sun
    • 1
  1. 1.Department of PharmacologyUniversity of MissouriColumbia

Personalised recommendations