Bulletin Géodésique (1946-1975)

, Volume 43, Issue 1, pp 20–49 | Cite as

Some remarks on the computation and adjustment of large systems of geodetic triangulation

Report presented at the tenth General Assembly of the International Association of Geodesy at Rome 1954
  • W. Baarda
Notices Scientifiques

Summary

The author makes a study of the classical methods of adjusting a triangulation. Use is made of the foundations and techniques of the method of least squares as developed byTienstra. The use of modern mathematical statistics and computing machines makes it not only possible to obtain a better appreciation of the results of observation and computation, but also to find a good practical solution.

The adjustment is divided into two main phases, the first of which is practically independent of the deviation of geoid and spheroid.

In section 4 some remarks are to be found with regard to the significance of Laplace's azimuth equation.

In section 6 the writer concludes that, in principle, a new adjustment of the continental triangulation is not necessary; use could be made of the adjustments of national triangulation already in existence; further, the writer pust forward the surmise that the assumption which is always mentioned in literature—that the reference ellipsoid and the geoid touch at the datum point—is not decisive.

Section 7 is devoted to the connection of ‘Füllnetze’.

Symbols

a

superscript indicating observations made on the surface of the earth

a

semi-major axis of the spheroid

f

flattening of the spheroid

φ

latitude, north positive

λ

longitude, east of Greenwich

h

height above the spheroid

θ

deviation of the vertical

ξ

deviation in meridian, north positive

η

deviation in prime vertical, east positive

ξA

component of deviation in azimuthA

ηA

component of deviation in azimuthA+90°

ν

height of the geoid above the spheroid

d

orthometric height above the geoid (from spirit levelling)

M

radius of curvature in meridian

N

radius of curvature in prime vertical

R

MN

ε

spherical excess of spheroidal triangle

γ

meridian convergence

A

azimuth, mostly of a geodesic

b

length of a base, reduced on the horizon

τ

enlargement in the base extension

s

distance along a geodesic

r

direction

ζ

zenith distance

Z

zenith

η

correction for skew normals (for heighth of the observed beacon) and for geodesic (for angle between normal section and geodesic)

ln

symbol for natural logarithm

L

auxiliary quantities, see section 2

S

auxiliary quantities, see section 2

*

superscript, see section 2

\(\bar x\)

(stochastic) quantity (or random variable, stochastic variable or variate). (Note: The author prefers the notation with an underscore, but for typographical reasons an overscore is used here.)

x

observation (or observed velue) of\(\bar x\)

vx

correction (or residual) ofx

\(\tilde x\)

mean of\(\bar x\)

σx

standard deviation (or error) of\(\bar x\)

σxy

amount of correlation (co-variance) of\(\bar x\) and\(\bar y\)

\(g^{xx} = \frac{{\sigma _x^2 }}{{\sigma ^2 }}\)

co-factor of

\(g^{xy} = \frac{{\sigma _{xy} }}{{\sigma ^2 }}\)

co-factor of\(\bar x\) and\(\bar y\)

σ2

variance (square of the standard deviation) of a quantity to which in the chosen system of weights the weight I would be given; indicated in abbreviation as variance of unit weight

gxy

weight of\(\bar x\) and\(\bar y\)

Δx

symbol for an unknown in the adjustment

dx

differential ofx

\(E\left\{ {\bar x} \right\}\)

symbol for the mathematical expectation (or expected value) of\(\bar x\)

\(\hat \sigma ^2 \)

estimation of σ2

Δx

symbol, see section 5

I

indication phase I or phase II

II

indication phase I or phase II

Pi

no. of pointi

[]

notation of a matrix

B

notation of a matrix

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tienstra, J. M. The foundation of the calculus of observations and the method of least squares.Bull. Géod., No. 10, 1948.Google Scholar
  2. 2.
    Tienstra, J. M. An extension of the method of least squares to correlated observations.Bull. Géod., No. 6, 1947.Google Scholar
  3. 3.
    Tienstra, J. M. Theory of the adjustment of normally distributed observations. Amsterdam, 1956.Google Scholar
  4. 4.
    Helmert.Die mathematischen und physikalischen Theorien der höheren Geodäsie. Leipzig, 1880. Part I, Chap. 12, paragraph 1.Google Scholar
  5. 5.
    Marussi, A. Bull. Géod., No. 19, 1951, p. 68.CrossRefGoogle Scholar
  6. 6.
    Marussi, A. Bull. Géod., No. 24, 1952, p. 173.Google Scholar
  7. 7.
    Vening Meinesz, F. A. Bull. Géod., No. 21, 1951, p. 299.CrossRefGoogle Scholar
  8. 8.
    Lambert, W. D. Bull. Géod., No. 3, 1947, p. 19.CrossRefGoogle Scholar
  9. 9.
    Baeschlin, C. F. Lehrbuch der Geodäsie. Zürich, 1948, p. 290.Google Scholar
  10. 10.
    Weiken, K. C. R. Comm. géod. balt., Stockh., 1928, p. 109.Google Scholar
  11. 11.
    Ölander, V. R. Bull. Géod., No. 25, 1952, p. 339.CrossRefGoogle Scholar
  12. 12.
    Jordan-Eggert.Handbuch der Vermessungskunde III, 2, 1941, pp. 422–434.Google Scholar
  13. 13.
    Dwyer, P. S. Linear computations. New York and London, 1951, Chap. 17.Google Scholar
  14. 14.
    Tienstra, L. Bull. Géod., No. 6, 1947, p. 327.CrossRefGoogle Scholar
  15. 15.
    Ölander, V. R. Ausgleichung einer Dreieckskette mit lauter Laplaceschen Punkten. Helsinki, 1927.Google Scholar
  16. 16.
    Baeschlin, C. F. Bull. Géod., No. 52, 1936, p. 425;Lehrbuch der Geodäsie. Zürich, 1948, p. 297.CrossRefGoogle Scholar
  17. 17.
    Kneissl, M. Z. Vermessungsw., 1940, p. 337; 1942, p. 233.Google Scholar
  18. 18.
    Roelofs, R. Bull. Géod., No. 6, 1947, p. 343.CrossRefGoogle Scholar
  19. 19.
    Ledersteger, K. Z. Vermessungsw., Wien, 1949.Google Scholar
  20. 20.
    Vening Meinesz, F. A. Bull. Géod., No. 15, 1950, pp. 32, 43.Google Scholar
  21. 21.
    Vening Meinesz, F. A., Baeschlin, C. F. andHotine, M. Bull. Géod., No. 19, 1951, p. 61.CrossRefGoogle Scholar
  22. 22.
    Baeschlin, C. F. Bull. Géod., No. 24, 1952, p. 251.CrossRefGoogle Scholar
  23. 23.
    Vening Meinesz, F. A. Bull. Géod., No. 27, 1953, p. 75.CrossRefGoogle Scholar
  24. 24.
    Tienstra, J. M. Bull. Géod., No. 6, 1947, p. 316.CrossRefGoogle Scholar
  25. 25.
    Wolf, H. et al. Veröff. Inst Erdmess., Bamberg, 1949–52.Google Scholar
  26. 26.
    Wolf, H. et al. Veröff. Inst. Erdmess., Bamberg, No. 6, 1949.Google Scholar
  27. 27.
    Ledersteger, K. Z. Vermessungsw., Wien, 1949, Sonderheft 8.Google Scholar
  28. 28.
    Ledersteger, K. Z. Vermessungsw., Wien, 1952, p. 174; 1953, p. 97.Google Scholar
  29. 29.
    Wolf, H. Bull. Géod., No. 21, 1951, p. 307.CrossRefGoogle Scholar
  30. 30.
    Baeschlin, C. F. Lehrbuch der Geodäsie. Zürich, 1948, p. 287.Google Scholar
  31. 31.
    Handleiding voor de technische werkzaamheden van het kadaster (Manual for technical activities of the cadastral service in the Netherlands). 's-Gravenhagen, 1956.Google Scholar

Copyright information

© The International Union of Geodesy and Geophysics 1957

Authors and Affiliations

  • W. Baarda
    • 1
  1. 1.Delft Technological UniversityHolland

Personalised recommendations