Skip to main content

Advertisement

Log in

Radial cortical and trabecular bone densities of men and women standardized with the European forearm phantom

  • Clinical Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

We previously showed that it is possible to cross-calibrate peripheral bone densitometers using the European Spine Phantom (ESP). We have now performed a multinational study of cross-calibrated radius bone density based on normal subjects of both sexes in eight European centers. Six centers were equipped with machines made by Scanco or Stratec for determining distal radial trabecular bone density by quantitative computed tomography (QCT) and two were equipped with Lunar SP2 single photon absorptiometry (SPA) equipment for measuring midshaft cortical bone density. Subjects recruited ranged from 20 to over 80 years of age. Over one hundred and fifteen men were studied by QCT and a different cohort of 104 men were studied with SPA; the equivalent figures for women were 235 and 123. Reference ranges were derived for bone density against age for each of the four groups, and their applicability is discussed in relation to between-center differences in the results obtained. There were insignificant differences (P>0.05 with Bonferroni correction) between centers in the values obtained by QCT in the different populations. However, there were considerably larger and highly statistically significant differences between midshaft cortical bone density values of about 10% of overall means between subjects from eastern Finland and central Belgium (P<0.001), with higher Finnish values. Women had considerably lower radial trabecular bone density values than men at all ages, a result that differentiates the radius from the spine. This sex difference widened after menopause. These results have important implications for understanding the contribution of bone density to the differential risk of Colles' fracture in the two sexes and suggest that further work is needed to establish young normal reference ranges for radial bone density in Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gardsell P, Johnell O, Nilsson BE (1989) Predicting fractures in women by using forearm bone densitometry. Calcif Tissue Int 46:235–342

    Google Scholar 

  2. Hui SL, Slemenda CW, Johnston CC (1989) Baseline measurement of bone mass predicts fracture in white women. Ann Intern Med 111:355–361

    PubMed  CAS  Google Scholar 

  3. Cummings SR, Black DM, Nevitt MC, Browner WS, Cauley JA, Ensrud K, Genant HK, Palermo L, Scott, J, Vogt TM (1993) Bone density at various sites for prediction of hip fractures. Lancet 341:72–75

    Article  PubMed  CAS  Google Scholar 

  4. Neer RM (1992) The utility of single photon absorptiometry and dual-energy X-ray absorptiometry [Commentary]. J Nucl Med 33:170–171

    PubMed  CAS  Google Scholar 

  5. Geusens P, Dequeker J, Verstraeten A, Nijs J (1986) Age-, sex-, and menopause-related changes of vertebral and peripheral bone: population study using dual and single photon absorptiometry and radiogrammetry. J Nucl Med 27:1540–1549

    PubMed  CAS  Google Scholar 

  6. Schneider P, Börner W (1991) Periphere quantitative Computertomograhie zur Knochenmineral-messung mit einem neuen spziellen QCT-Scanner. Fortschr Röntgens 154:292–299

    Article  CAS  Google Scholar 

  7. Wapniarz M, Lehmann R, Randerath O, Baedeker S, John W, Klein K, Allolio B (1994) Precision of dual X-ray absorptiometry and peripheral computed tomography using mobile densitometry units. Calcif Tissue Int 54:219–223

    Article  PubMed  CAS  Google Scholar 

  8. Durand EP, Rüegsegger P (1992) High-contrast resolution of CT images for bone structure analysis. Med Phys 19:569–573

    Article  PubMed  CAS  Google Scholar 

  9. Pearson J, Ruegsegger P, Dequeker J, Henley M, Bright J, Reeve J, Kalender W, Felsenberg D, Laval-Jeantet A-M, Adams JE, Birkenhager JC, Fischer M, Guesens P, Hesch R-D, Hyldstrup L, Jaeger P, Jonson R, Kroger H, van Lingen A, Mitchell A, Reiners C, Schneider P (1994). European semianthropomorphic phantom for the cross-calibration of peripheral bone densitometers. Assessment of precision, accuracy and stability. Bone Miner 27:109–120

    PubMed  CAS  Google Scholar 

  10. Rüegsegger P, Kalender W (1993) A phantom for standardization and quality control in peripheral bone measurements by pQCT and DXA. Phys Med Biol 38:1963–1970

    Article  Google Scholar 

  11. Dequeker J, Pearson J, Reeve J, Henley M, Bright J, Felsenberg D, Kalender W, Laval-Jeantet A-M, Rüegsegger P, Adams J, Diaz Curiel M, Fischer M, Galan F, Geusens P, Hyldstrup L, Jaeger P, Kotzki P, Kröger, Lips P, Mitchell A, Louis O, Perez Cano R, Pols H, Reid DM, Ribot C, Schneider P, Lunt M (1995) Dual X-Ray absorptiometry: cross-calibration and normative reference ranges for the spine. Results of a European Community Concerted Action. Bone 17:247–254

    Article  PubMed  CAS  Google Scholar 

  12. Pearson J, Dequeker J, Reeve J, Felsenberg D, Henley M, Bright J, Lunt M, Adams JE, Diaz Curiel M, Galan, F, Guesens P, Jaeger P, Kroger H, Lips P, Mitchell A, Perez-Cano R, Pols H, Rapado A, Reid D, Ribot C, Schneider P, Laval-Jeantet A-M, Rüegsegger P, Kalender W (1994) Dual X-ray absorptiometry of the proximal femur: normal European values standardised with the European Spine Phantom. J Bone Miner Res 10:315–324

    Google Scholar 

  13. Jonson R (1993) Mass attenuation coefficients, quantities and units for use in bone mineral determinations. Osteoporosis Int. 3:103–106

    Article  CAS  Google Scholar 

  14. Royston JP (1991) Constructing time-specific reference ranges. Stat Med 10:675–690

    PubMed  CAS  Google Scholar 

  15. Butz S, Wuster C, Scheidt-Nave C, Götz M, Ziegler R (1994) Forearm BMD as measured by peripheral quantitative computed tomography (pQCT) in a German reference population. Osteoporosis Int 4:179–184

    Article  CAS  Google Scholar 

  16. Kröger H, Heikkinen J, Laitinen K, Kotaniemi A (1992). Dual-energy x-ray absorptiometry in normal women: a cross-sectional study of 717 Finnish volunteers. Osteoporosis Int. 2:135–140

    Article  Google Scholar 

  17. Kröger H, Laitinen K (1992) Bone mineral density measured by dual-energy x-ray absorptiometry in normal men. Eur J Clin Invest 22:454–460

    PubMed  Google Scholar 

  18. Elffors I, Allender E, Kanis JA, Gullberg B, Johnell O, Dequeker J, Dilsen G, Gennari C, Lopez Vaz AA, Lyritis G, Mazzuoli GF, Miravet L, Passeri M, Perez Cano R, Rapado A, Ribot C (1994) The variable incidence of hip fracture in Southern Europe. Osteoporosis Int 4:253–263

    Article  CAS  Google Scholar 

  19. O'Neill TW, Varlow J, Felsenberg D, Silman AJ, the EVOS Group (1994) Sex and geographic influences on the prevalence of vertebral deformity. J Bone Miner Res (suppl 1)9:S271

    Google Scholar 

  20. Geusens P, Dequeker J, Verstraeten A, Nijs J (1986) Age- sex-and menopause-related changes of vertebral and peripheral bone: population study using dual and single photon absorptiometry and radiogrammetry. J Nucl Med 27:1540–1549

    PubMed  CAS  Google Scholar 

  21. Kelly PJ, Twomey L, Sambrook PN, Eisman JA (1990) Sex differences in peak adult bone mineral density. J Bone Miner Res 5:1169–1175

    PubMed  CAS  Google Scholar 

  22. Krall EA, Dawson-Hughes B (1993) Heritable and life-style determinants of bone mineral density. J Bone Miner Res 8:1–9

    Article  PubMed  CAS  Google Scholar 

  23. Gilsanz V, Ines Boechat M, Gilsanz R, Luiza Loro M, Roe TF, Goodman WG (1994) Gender differences in vertebral size in adults: biomechanical implications. Radiology 190:678–682

    PubMed  CAS  Google Scholar 

  24. Genant HK, Gluer C-C, Lotz JC (1994) Gender differences in bone density, skeletal geometry and fracture biomechanics. Radiology 190:636–640

    PubMed  CAS  Google Scholar 

  25. O'Neill TW, Varlow J, Silman AJ, Reeve J, Reid DM, Todd C, Woolf AD (1994) Age and sex influences on fall characteristics. Ann Rheum Dis 53:773–775

    Article  PubMed  Google Scholar 

  26. Rüegsegger P (1994) The use of peripheral QCT in the evaluation of bone remodelling. Endocrinologist 4:167–176

    Article  Google Scholar 

  27. WHO (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. WHO Tech Rep Series 843, WHO Geneva

    Google Scholar 

  28. Mazess RB, Barden HS (1990). Interrelationships among bone densitometry sites in normal young women. Bone Miner 11: 347–356

    Article  PubMed  CAS  Google Scholar 

  29. Pearson J, Dequeker J, Henley M, Bright J, Reeve J, Kalender W, Laval-Jeantet A-M, Rüegsegger P, Felsenberg D, Adams JE, Birkenhager JC, Braillon P, Diaz Curiel M, Fischer M, Galan F, Guesens P, Hyldstrup L, Jaeger P, Jonson R, Kalef-Ezras J, Kotzki P, Kroger H, van Lingen A, Nilsson S, Osteaux M, Perez-Cano R, Reid D, Reiners C, Ribot C, Schneider P, Slosman DO, Wittenberg G (1994) European semianthropomorphic spine phantom for the cross-calibration of bone densitometers. Assessment of precision, stability and accuracy. Osteoporosis Int 5:174–184

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reeve, J., Kröger, H., Nijs, J. et al. Radial cortical and trabecular bone densities of men and women standardized with the European forearm phantom. Calcif Tissue Int 58, 135–143 (1996). https://doi.org/10.1007/BF02526878

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02526878

Key words

Navigation