Skip to main content
Log in

Time-frequency analysis of the first heart sound: Part 3: Application to dogs with varying cardiac contractility and to patients with mitral mechanical prosthetic heart valves

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The cone-kernel distribution (CKD) is first applied to the analysis of the intracardiac and the thoracic first heart sound (S1) of dogs in various cardiac contractile states, and secondly to the S1 of patients with mitral mechanical prosthetic heart valves. The CKD of native S1 in dogs shows that the dominant components of S1 are generally concentrated in a band at around 50 Hz with a horizontal flat or a semi-lunar shape, independently of the myocardial contractile state. There is no significant systematic rising frequency component. The instantaneous frequency of S1 shows a good cross-correlation with the time derivative of the left ventricular pressure (dP/dt), but the maximum frequency is not proportional to the maximum of dP/dt. The CKD of S1 in patients with mitral mechanical prosthetic heart valves showed a pulse-like component with a high-frequency bandwidth, which is distinct from the low constant-frequency components of S1 produced by native heart valves

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Referencer

  • Boashash B. (1992): ‘Time-frequency signal analysis: methods and applications’, (Longman Cheshire Pty Ltd) pp. 3–518

  • Candy J. V., andJones H. E. (1995a): ‘Processing of prosthetic heart valve sounds for single leg separation classification,’J. Acoust. Soc. Am.,97, pp. 3663–3673

    Article  Google Scholar 

  • Candy, J. V., andJones H. E. (1995b): ‘Classification of prosthetic heart valve sounds: a parametric approach’,J. Acoust. Soc. Am.,97, pp. 3675–3687

    Article  Google Scholar 

  • Chen D., Durand L.-G., andLee, H. C. (1997): ‘Time-frequency analysis of the first heart sound. Part 1: Simulation and analysis’,Med. Biol. Eng. Comput.,35, pp. 306–310

    Article  Google Scholar 

  • Chen D., Durand L.-G., Guo Z., andLee, H. C. (1997): ‘Timefrequency analysis of the first heart sound. Part 2: An appropriate time-frequency representation technique’,Med. Biol. Eng. Comput.,35, pp. 311–317

    Article  Google Scholar 

  • Chia R. (1994): ‘Finite element analysis of vibrations of the Björk-Shiley convexo-concave heart valve’,Proceedings of the IEEE 7th Conference on Computer-Based Medical Systems, pp. 48–52

  • Durand L. G. (1994): ‘Evaluation of prosthetic heart valve function by signal processing of heart valve sounds’,Med. Life Sci. Eng. (J. Biomed. Eng. Soc. India),13, pp. 39–58

    Google Scholar 

  • Durand L. G., Grenier M. C., Inderbitzen R., Wieting D. W., andStein P. D. (1995): ‘Low-frequency analysis of opening sound for detection of single leg separation of Björk-Shiley convexoconcave heart valves’,J. Heart Valve Dis.,4, pp. S32-S37

    Google Scholar 

  • Durand L. G., Langlois Y. E., Lanthier T., Chiarella R., Coppens P., Carioto S., andBertrand-Bradley S. (1990): ‘Spectral analysis., and acoustic transmission of mitral and aortic valve closure sounds in dogs. Part IV: Effects of modulating cardiac inotropy’,Med. Biol. Eng. Comput.,28, pp. 439–445

    Article  Google Scholar 

  • Durand L. G., andPibarot P. (1995): ‘Digital signal processing of the phonocardiogram: review of the most recent advancements’,CRC Crit. Rev. Biomed. Eng.,23, pp. 163–219

    Google Scholar 

  • Durand L. G., Stein P. D., Grenier M. C., Henry J. W., Inderbitzen R. S., andWieting D. W. (1994): ‘In vitro and in vivo low frequency acoustic analysis of Björk-Shiley convexoconcave heart valve opening sounds’,Proceedings of the IEEE 7th Conference on Computer-Based Medical Systems., pp. 61–66.

  • Gitterman M., andLewkowicz M. (1987): ‘The first heart sound during the isovolumetric contraction’,J. Biomech.,21, pp. 35–49

    Article  Google Scholar 

  • Hearn T. C., Mazumdar J., andHubbard R. (1979): ‘Temporal and heart-size in first-heart-sound spectra’,Med. Biol. Eng. Comput.,17, pp. 563–568.

    Article  Google Scholar 

  • Kagawa Y., Nitta S., Satoh N., Saji K., Shibota Y., Horiuchi T., andTanaka M. (1977): ‘Sound spectroanalytic diagnosis of malfunctioning prosthetic heart valve’,Tohoku J. Exp. Med.,123, pp. 77–89

    Article  Google Scholar 

  • Kagawa Y., Sato N., Nitta S., Hongo T., Tanaka M., Mohri H., andHoriuchi T. (1980): ‘Real-Time sound spectroanalysis for diagnosis of malfunctioning prosthetic valves’,J. Thorac. Cardiovasc Surg.,79, pp. 671–679

    Google Scholar 

  • Köymen H., Altay B. K., andIder Y. Z. (1987): ‘A study of prosthetic heart valve sounds’,IEEE Trans. Biomed. Eng.,34, pp. 853–863.

    Google Scholar 

  • Mazumdar J., andHearn T. C. (1978): ‘Mathematical analysis of mitral valve leaflets’,J. Biomech.,11, pp. 291–296

    Article  Google Scholar 

  • Plemons T. D., andHovenga M. (1995): ‘Acoustic classification of the state of artificial heart valves’,J. Acoust. Soc. Am.,97, pp. 2326–2333

    Article  Google Scholar 

  • Sato N., Miura M., Itoh T., Ohmi M., Haneda K., Mohri H., Nitta S., andTanaka M. (1993): ‘Sound spectral analysis of prosthetic valvular clicks for diagnosis of thrombosed Björk-Shiley tilting standard disk valve prostheses’,J. Thorac. Cardiovasc. Surg.,105, pp. 313–320

    Google Scholar 

  • Wood J. C., andBarry D. T. (1994): ‘Quantification of first heart sound frequency dynamics across the human chest wall’,Med. Biol. Eng. Comput.,32, pp. S71-S78

    Article  Google Scholar 

  • Wood J. C., andBarry D. T. (1995): ‘Time-frequency analysis of the first heart sound’,IEEE Eng. Med. Biol. Mag., pp. 144–151.

  • Wood J. C., andBarry D. T. (1996): ‘Time-frequency analysis of skeletal muscle and cardiac vibrations’,Proc. IEEE,84, pp. 1281–1294

    Article  Google Scholar 

  • Wood J. C., Buda A. J., andBarry D. T. (1992): ‘Time-frequency transforms: a new approach to first heart sound frequency dynamics’,IEEE Trans. Biomed. Eng.,39, pp. 730–740

    Article  Google Scholar 

  • Wood J. C., Buda A. J., Lim M. J., andBarry D. T. (1991): ‘Spatial variation of first heart sound frequency dynamics across the canine left ventricle: a comparison of intracardiac and epicardial recordings’,Proceedings of the 13th Annual International Conference of the IEEE Engineering in Medicine and Biological Society,13, pp. 2099–2100

    Google Scholar 

  • Wood J. C., Festen M. P., Lim M. J., Buda A. J., andBarry D. T. (1994): ‘Regional effects of myocardial ischemia on epicardially recorded canine first heart sounds’,J. Appl. Physiol.,76, pp. 291–302.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. -G. Durand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, D., Durand, L.G., Lee, H.C. et al. Time-frequency analysis of the first heart sound: Part 3: Application to dogs with varying cardiac contractility and to patients with mitral mechanical prosthetic heart valves. Med. Biol. Eng. Comput. 35, 455–461 (1997). https://doi.org/10.1007/BF02525523

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02525523

Keywords

Navigation