Skip to main content
Log in

Glutamine uptake by a sodium-dependent secondary transport system inCorynebacterium glutamicum

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Corynebacterium glutamicum took up glutamine by a sodium-dependent secondary transport system. Both the membrane potential and the sodium gradient were driving forces. Glutamine uptake showed Michaelis-Menten kinetics, with aK m of 36 μM and aV max of 12.5 nmol min−1 (mg dry weight)−1 at pH 7. Despite a pH optimum in the alkaline range around pH 9, it was shown that uncharged glutamine is the transported species. The affinity for the cotransported sodium was relatively low; an apparentK m of 1.4 mM was determined. Among various substrates tested, only asparagine, when added in 50-fold excess, led to an inhibition of glutamine transport. It was concluded that glutamine uptake occurs via a specific transport system in symport with at least one sodium ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CCCP :

Carbonylcyanide

m :

chlorophenylhydrazone

ΔΨ:

Membrane potential

References

  • Bakker EP, Mangerich WE (1981) Interconversion of components of the bacterial proton motive force by electrogenic potassium transport. J Bacteriol 147:820–826

    PubMed  CAS  Google Scholar 

  • Beck BJ, Russell JB (1994) Electrogenic glutamine uptake byPeptostreptococcus anaerobius and generation of a transmembrane potential. J Bacteriol 176:1303–1308

    PubMed  CAS  Google Scholar 

  • Berger EA (1973) Different mechanisms of energy coupling for the active transport of proline and glutamine inEscherichia coli. Proc Natl Acad Sci USA 70:1514–1518

    Article  PubMed  CAS  Google Scholar 

  • Börmann-El Kholy ER, Eikmanns BJ, Gutmann M, Sahm H (1993) Glutamate dehydrogenase is not essential for glutamate formation byCorynebacterium glutamicum. Appl Environ Microbiol 59:2329–2331

    Google Scholar 

  • Bröer S, Krämer R (1990) Lysine uptake and exchange inCorynebacterium glutamicum. J Bacteriol 172:7241–7248

    PubMed  Google Scholar 

  • Bröer S, Krämer R (1991) Lysine secretion byCorynebacterium glutamicum. 2. Energetics and mechanism of the transport. Eur J Biochem 202:137–143

    Article  PubMed  Google Scholar 

  • Chen G, Russell JB (1989) Transport of glutamine byStreptococcus bovis and conversion of glutamine to pyroglutamic acid and ammonia. J Bacteriol 171:2981–2985

    PubMed  CAS  Google Scholar 

  • Ebbighausen H, Weil B, Krämer R (1989) Transport of branched-chain amino acids inCorynebacterium glutamicum. Arch Microbiol 151:238–244

    Article  PubMed  CAS  Google Scholar 

  • Frings E, Kunte HJ, Galinski EA (1993) Compatible solutes in representatives of the generaBrevibacterium andCorynebacterium: occurrence of tetrahydropyrimidines and glutamine. FEMS Microbiol Lett 109:25–32

    Article  CAS  Google Scholar 

  • Jahns T (1994) Ammonium-stimulated, sodium-dependent uptake of glutamine inBacillus pasteurii. Arch Microbiol 161:207–214

    CAS  Google Scholar 

  • Kleiner D (1985) Bacterial ammonium transport. FEMS Microbiol Rev 32:87–100

    Article  CAS  Google Scholar 

  • Klingenberg M, Pfaff E (1967) Means of terminating reactions. In: Estabrook RW, Pullmann MR (eds) Methods in enzymology, vol 10. Academic Press, New York, pp. 680–684

    Google Scholar 

  • Krämer R, Lambert C (1990) Uptake of glutamate inCorynebacterium glutamicum. 2. Evidence for a primary active transport system. Eur J Biochem 194:937–944

    Article  PubMed  Google Scholar 

  • Krämer R, Lambert C, Hoischen C Ebbighausen H (1990) Uptake of glutamate inCorynebacterium glutamicum 1. Kinetic properties and regulation by internal pH and potassium. Eur J Biochem 194:929–935

    Article  PubMed  Google Scholar 

  • Krämer R, Boles E, Eggeling L, Erdmann A, Gutmann M, Kronemeyer W, Palmieri L, Zittrich S (1994) Mechanism and energetics of amino-acid transport in coryneform bacteria. Biochim Biophys Acta 1187:245–249

    Article  Google Scholar 

  • Poolman B (1987) Energy transducing processes in growing, and starving lactic acid Streptococci. PhD thesis, University of Groningen, The Netherlands

    Google Scholar 

  • Poolman B, Smid EJ, Konings WN (1987) Kinetic properties of a phosphate-bond-driven glutamate-glutamine transport system inStreptococccus lactis andStreptococcus cremovis. J Bacteriol 169:2755–2761

    PubMed  CAS  Google Scholar 

  • Reitzer LJ, Magasanik B (1987) Ammonia assimilation and the biosynthesis of glutamine, glutamate, asparatate, asparagine,l-alanine andd-alamine. In: Neidhardt FC (ed)Escherichia coli andSalmonella typhimurium. Cellular and molecular biology, vol 1. American Society of Microbiology, Washington DC, pp 302–320

    Google Scholar 

  • Rottenberg H (1979) The measurement of membrane potential and pH in cells, organelles and vesicles. In: Fleischer S, Packer L (eds) Methods in enzymology, vol 55. Academic Press, New York, pp 547–569

    Google Scholar 

  • Wu L, Welker NE (1991) Cloning and characterization of a glutamine transport operon ofBacillus stearothermophilus NUB36: effect of temperature on regulation of transcription. J Bacteriol 173:4877–4888

    PubMed  CAS  Google Scholar 

  • Zaritsky A, Kihara M, Macnab RM (1981) Measurement of membrane potential inBacillus pasteurii: a comparison of lipophilic cations, rubidium ion, and a cyanine dye as probes. J Membr Biol 63:215–231

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Krämer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siewe, R.M., Weil, B. & Krämer, R. Glutamine uptake by a sodium-dependent secondary transport system inCorynebacterium glutamicum . Arch. Microbiol. 164, 98–103 (1995). https://doi.org/10.1007/BF02525314

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02525314

Key words

Navigation