Skip to main content
Log in

Thermotoga subterranea sp. nov., a new thermophilic bacterium isolated from a continental oil reservoir

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A thermophilic, strictly anaerobic bacterium, designated strain SL1, was isolated from a deep, continental oil reservoir in the East Paris Basin (France). This organism grew between 50 and 75°C, with an, optimum at 70°C. It was inhibited by elemental sulfur and was able to reduce cystine and thiosulfate to hydrogen sulfide. The G+C content (40 mol%), the presence of a lipid structure unique to the genusThermotoga, and the 16S rRNA sequence of strain SL1 indicated that the isolate belongs to the genusThermotoga. Based on DNA-DNA hybridization, isolate SL1 does not show species-level similarity with the recognized speciesT. maritima, T. neapolitana, andT. thermarum. Based on this description of strain SL1, we propose the recognition of a new species:Thermotoga subterranea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achenbach-Richter L, Gupta R, Stetter KO, Woese CR (1987) Were the original eubacteria thermophiles? Syst Appl Microbiol 9:34–39

    PubMed  CAS  Google Scholar 

  • Balch WE, Wolfe RS (1976) New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth ofMethanobacterium ruminantium in a pressurized atmosphere. Appl Environ Microbiol 32:781–791

    PubMed  CAS  Google Scholar 

  • Balch W, Fox GE, Magrum LS, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296

    PubMed  CAS  Google Scholar 

  • Beeder J, Nilsen RK, Rosnes JT, Torsvik T, Lien T (1994)Archaeoglobus fulgidus isolated from hot North Sea oil field waters. Appl Environ Microbiol 60:1227–1231

    PubMed  Google Scholar 

  • Bernard FP, Connan J, Magot M (1992) Indigenous microorganisms in connate water of many oil fields: a new tool in exploration and production techniques. In: Proceedings of the 67th annual technical conference and exhibition of the Society of Petroleum Engineers. pp 467–476

  • Blumentals II, Itoh M, Olson GJ, Kelly RM (1990) Role of polysulfides in reduction of elemental sulfur by the hyperthermophilic archaebacteriumPyrococcus furiosus. Appl Environ Microbiol 56:1255–1262

    PubMed  CAS  Google Scholar 

  • Burggraf S, Olsen GJ, Stetter KO, Woese CR (1992) A phylogenetic analysis ofAquifex pyrophilus. Syst Appl Microbiol 15: 352–356

    PubMed  CAS  Google Scholar 

  • Charbonnier F, Forterre P (1994) Comparison of plasmid DNA topology among mesophilic and thermophilic eubacteria and archaebacteria. J Bacteriol 176:1251–1259

    PubMed  CAS  Google Scholar 

  • Christensen B, Torsvik T, Lien T (1992) Immunomagnetically captured thermophilic sulfate-reducing bacteria from North Sea oil field waters. Appl Environ Microbiol 58:1244–1248

    PubMed  Google Scholar 

  • Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458

    CAS  Google Scholar 

  • Davey ME, Wood WA, Key R, Nakamura K, Stahl DA (1993) Isolation of three species ofGeotoga andPetrotoga: two new genera, representing a new lineage in the bacterial line of descent distantly related to the “Thermotogales”. Syst Appl Microbiol 16:191–200

    Google Scholar 

  • De Rosa M, Gambacorta A, Huber R, Lanzotti V, Nicolaus B, Stetter KO, Trincone A (1989) Lipid structures inThermotoga maritima. In: Da Costa MS, Duarte JC, Williams RAD (eds) Microbiology of extreme environments and its potential for biotechnology. Elsevier, Amsterdam New York, pp 167–173

    Google Scholar 

  • De Soete G (1983) A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626

    Article  Google Scholar 

  • Erauso G, Reysenbach AL, Godfroy A, Meunier JR, Crump B, Partensky F, Barros JA, Marteinsson VT, Barbier G, Pace NR, Prieur D (1993)Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Arch Microbiol 160:338–349

    Article  CAS  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum-likelihood approach. J Mol Evol 17:368–376

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Ghiorse WC, Wilson JT (1988) Microbial ecology of the terrestrial subsurface. Adv, Appl Microbiol 33:107–172

    Article  CAS  Google Scholar 

  • Grassia G, McLean KM, Glénat P, Sheehy AJ (1991) Thermophilic bacteria from petroleum reservoirs (abstract). Proceedings of the Australian Society for Microbiology Annual Scientific Meeting S21.3

  • Huber R, Stetter KO (1992) The order Thermotogales. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, 2nd edn. Springer, Berlin Heidelberg New York, pp 3809–3815

    Google Scholar 

  • Huber R, Langworthy TA, König H, Thomm M, Woese CR, Sleytr UB, Stetter KO (1986)Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C. Arch Microbiol 144:324–333

    Article  CAS  Google Scholar 

  • Huber R, Woese CR, Langworthy TA, Fricke H, Stetter KO (1989)Thermosipho africanus gen. nov. represents a new genus of thermophilic eubacteria within the “Thermotogales”. Syst Appl Microbiol 12:32–37

    Google Scholar 

  • Huber R, Woese CR, Langworthy TA, Kristjansson JK, Stetter KO (1990)Fervidobacterium islandicum sp. nov., a new extremely thermophilic eubacterium belonging to the “Thermotogales”. Arch Microbiol 154:105–111

    Article  CAS  Google Scholar 

  • Ingvorsen K, Jorgensen BB (1979) Combined measurement of oxygen and sulfide in water samples. Limnol Oceanogr. 24: 390–393

    Article  CAS  Google Scholar 

  • Ivanova TL, Turova TP, Antonov AS (1988) DNA-DNA hybridization studies on some purple non-sulfur bacteria. Syst Appl Microbiol 10:259–263

    Google Scholar 

  • Jannasch HW, Huber R, Belkin S, Stetter KO (1988)Thermotoga neapolitana sp. nov. of the extremely thermophilic, eubacterial genusThermotoga. Arch Microbiol 150:103–104

    Article  Google Scholar 

  • Johnson JL (1985) DNA reassociation and RNA hybridisation of bacterial nucleic acids. In: Krieg NR, Holt JG (eds) Bergey's manual of systematic bacteriology, vol 1. Williams & Wilkins, Baltimore, pp 8–12

    Google Scholar 

  • Kristjánsson JK, Hjörleifsdóttir S, Marteinsson VT, Alfredsson GA (1994)Thermus scotoductus sp. nov., a pigment-producting thermophilic bacterium from hot tap water in Iceland and includingThermus sp. X-1. Syst Appl Microbiol 17:44–50

    Google Scholar 

  • Lowe SE, Jain MK, Zeikus JG (1993) Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, or substrates. Microbiol Rev 57:451–509

    PubMed  CAS  Google Scholar 

  • Maidak BL, Larsen NG, McCaughey MJ, Overbeek R, Olsen GJ, Fogel K, Blandy J, Woese CR (1994) The ribosomal, database project. Nucleic Acids Res 22:3485–3487

    PubMed  CAS  Google Scholar 

  • Marmur J, Doty D (1962) determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118

    Article  PubMed  CAS  Google Scholar 

  • Patel BKC, Morgan HW, Daniel RM (1985)Fervidobacterium nodosum gen. nov. and sp. nov., a new chemoorganotrophic caldoactive, anaerobic bacterium. Arch Microbiol 141:63–69

    Article  CAS  Google Scholar 

  • Reysenbach AL, Giver LJ, Wickham GS, Pace NR (1992) Differential amplification of rRNA genes by polymerase chain reaction. Appl Environ Microbiol 58:3417–3418

    PubMed  CAS  Google Scholar 

  • Rosnes JT, Torsvik T, Lien T (1991) Spore-forming thermophilic sulfate-reducing bacteria isolated from North Sea oil field waters. Appl Environ Microbiol 57:2302–2307

    PubMed  Google Scholar 

  • Rozanova EP, Nazina TN (1979) Occurrence of thermophilic sulfate-reducing bacteria in oil-bearing strata of Apsheron and Western Siberia. Microbiology (English translation of Mikrobiologiia) 48:907–911

    Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel SJ, Scharf S, Higuchi R, Horn GT, Mullis HB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 230:1350–1354

    Article  Google Scholar 

  • Sambrook J, Fritch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5483

    Article  PubMed  CAS  Google Scholar 

  • Sorbö B (1957) A colorimetric method for the determination of thiosulfate. Biochim Biophys Acta 23:412–416

    Article  PubMed  Google Scholar 

  • Stetter KO, Huber R, Blochl E, Kurr M, Eden RD, Fielder M, Cash H, Vance I (1993) Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365:743–745.

    Article  Google Scholar 

  • Windberger E, Huber R, Trincone A, Fricke H, Stetter KO (1989)Thermotoga thermarum sp. nov. andThermotoga neapolitana occurring in African continental solfataric springs. Arch Microbiol 151:506–512

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Jeanthon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeanthon, C., Reysenbach, AL., L'Haridon, S. et al. Thermotoga subterranea sp. nov., a new thermophilic bacterium isolated from a continental oil reservoir. Arch. Microbiol. 164, 91–97 (1995). https://doi.org/10.1007/BF02525313

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02525313

Key words

Navigation