Skip to main content
Log in

O2-Sensing and O2-dependent gene regulation in facultatively anaerobic bacteria

  • Mini-review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Availability of O2 is one of the most important regulatory signals in facultatively anaerobic bacteria. Various two- or one-component sensor/regulator systems control the expression of aerobic and anaerobic metabolism in response to O2. Most of the sensor proteins contain heme or Fe as cofactors that interact with O2 either by binding or by a redox reaction. The ArcA/ArcB regulator of aerobic metabolism inEscherichia coli may use a different sensory mechanism. In two-component regulators, the sensor is located in the cytoplasmic membrane, whereas one-component regulators are located in the cytoplasm. Under most conditions, O2 can readily reach the cytoplasm and could provide the signal in the cytoplasm. The transcriptional regulator FNR ofE. coli controls the expression of many genes required for anaerobic metabolism in response to O2. Functional homologs of FNR are present in facultatively anaerobic Proteobacteria and presumably also in gram-positive bacteria. The target genes of FNR are mostly under multiple regulation by FNR and other regulators that respond to O2, nitrate, or glucose. FNR represents a ‘one-component’ sensor/regulator and contains Fe for signal perception. In response to O2 availability, FNR is converted reversibly from the aerobic (inactive) state to the anaerobic (active) state. Experiments suggest that the Fe cofactor is bound by four essential cysteine residues. The O2-triggered transformation between active and inactive FNR presumably is due to a redox reaction at the Fe cofactor, but other modes of interaction cannot be excluded. O2 seems to affect the site-specific DNA binding of FNR at target genes or the formation of an active transcriptional complex with RNA polymerase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anthamatten D, Scherb B, Hennecke H (1992) Characterization of afixLJ-regulatedBradyrhizobium japonicum gene sharing similarity with theEscherichia coli fnr andRhizobium meliloti fixK genes. J Bacteriol 174:2111–2120

    PubMed  CAS  Google Scholar 

  • Bannan JD, Moran MJ, MacInnes J, Soltes GA, Friedman RL (1993) Cloning and characterization ofbtr, aBordetella pertussis gene encoding an FNR-like transcriptional regulator. J Bacteriol 175:7228–7235

    PubMed  CAS  Google Scholar 

  • Bell A, Busby S (1994) Location and orientation of an activating region in theEscherichia coli transcription factor, FNR. Mol Microbiol 11:383–390

    Article  PubMed  CAS  Google Scholar 

  • Bell AI, Gaston KL, Cole JA, Busby SJW (1989) Cloning of binding sequences for theEscherichia coli transcription activators, FNR and CRP: location of bases involved in discrimination between FNR and CRP. Nucleic Acids Res 17:3865–3874

    PubMed  CAS  Google Scholar 

  • Bogachev AV, Murtazina RA, Skulachev VP (1993) Cytochromed induction inEscherichia coli growing under unfavorable conditions. FEBS Lett 336:75–78

    Article  PubMed  CAS  Google Scholar 

  • Bongaerts J, Zoske S, Weidner U, Unden G (1995) Transcriptional regulation of the proton-translocating NADH dehydrogenase genes (nuoA-N) ofEscherichia coli by electron acceptors, electron donors and gene regulators. Mol Microbiol 16:521–534

    Article  PubMed  CAS  Google Scholar 

  • Chippaux M, Giudici D, Aboujaoude A, Casse F, Pascal M, (1978) A mutation leading to the total lack of nitrite reductase activity inEscherichia coli K-12. Mol Gen Genet 182:477–479

    Article  Google Scholar 

  • Compan I, Touati D (1993) Interaction of six global transcriptional regulators in expression of manganese superoxide dismutase inEscherichia coli K-12. J Bacteriol 175:1687–1696

    PubMed  CAS  Google Scholar 

  • Compan I, Touati D (1994) Anaerobic activation ofarcA transcription inEscherichia coli: roles of Fnr and ArcA. Mol Microbiol 11:955–964

    Article  PubMed  CAS  Google Scholar 

  • Cotter PA, Gunsalus RP (1989) Oxygen, nitrate and molybdenum regulation ofdmsABC gene expression inEscherichia coli. J Bacteriol 171:3817–3823

    PubMed  CAS  Google Scholar 

  • Cotter PA, Gunsalus RP (1992) Contribution of thefnr andarcA gene products in coordinate regulation of cytochromeo andd oxidase (cyoABCD andcydAB) genes inEscherichia coli. FEMS Microbiol Lett 91:31–36

    Article  CAS  Google Scholar 

  • Cramm R, Siddiqui RA, Friedrich B (1994) Primary sequence and evidence for a physiological function of the flavohemoprotein ofAlcaligenes eutrophus. J Biol Chem 269:7349–7354

    PubMed  CAS  Google Scholar 

  • Cuypers H, Zumft WG (1993) Anaerobic control of denitrification inPseudomonas stutzeri escapes mutagenesis of anfnr-like gene. J Bacteriol 175:7236–7246

    PubMed  CAS  Google Scholar 

  • Darie S, Gunsalus RP (1994) Effect of heme and oxygen availability onhemA gene expression inEscherichia coli: role of thefnr, arcA, andhimA gene products. J Bacteriol 176:5270–5276

    PubMed  CAS  Google Scholar 

  • David M, Daveran ML, Batut J, Dedieu A, Domergue O, Ghai J, Hertig C, Boistard P, Kahn D (1988) Cascade regulation ofnif gene expression inRhizobium meliloti. Cell 54:671–683

    Article  PubMed  CAS  Google Scholar 

  • Dispensa M, Thomas CT, Kim MK, Perrotta JA, Gibson J, Harwood CS (1992) Anaerobic growth ofRhodopseudomonas palustris on 4-hydroxybenzoate is dependent AadR, a member of the cyclic AMP receptor protein family of transcriptional regulators. J Bacteriol 174:5803–5813

    PubMed  CAS  Google Scholar 

  • Dong XR, Li SF, DeMoss JA (1992) Upstream sequence elements required for NarL-mediated activation of transcription from thenarGHJI promoter ofEscherichia coli. J Biol Chem 267: 14122–14128

    PubMed  CAS  Google Scholar 

  • Eiglmeier K, Honoré N, Iuchi S, Lin ECC, Cole ST (1989) Molecular genetic analysis of FNR-dependent promoters. Mol Microbiol 3:869–878

    Article  PubMed  CAS  Google Scholar 

  • Engel P, Trageser M, Unden G (1991) Reversible interconversion of the functional state of the gene regulator FNR fromEscherichia coli in vivo by O2 and iron availability. Arch Microbiol 156:463–470

    PubMed  CAS  Google Scholar 

  • Engel P, Krämer R, Unden G (1992) Anaerobic fumarate transport inEscherichia coli by afnr-dependent dicarboxylate uptake system which is different from aerobic dicarboxylate uptake. J Bacteriol 174:5533–5539

    PubMed  CAS  Google Scholar 

  • Engel P, Krämer R, Unden G (1994) Transport of C4-dicarboxylates by anaerobically grownEscherichia coli: energetics and mechanism of exchange, uptake and efflux. Eur J Biochem 222:605–614

    Article  PubMed  CAS  Google Scholar 

  • Eraso J, Weinstock GM (1992) Anaerobic control of colicin E1 production. J Bacteriol 174:5101–5109

    PubMed  CAS  Google Scholar 

  • Fischer HM, Bruderer T, Hennecke H (1988) Essential and non-essential domains in theBradyrhizobium japonicum NifA protein: identification of indispensable cysteine residues involved in redox reactivity and/or metal binding. Nucleic Acids Res 16:2207–2224

    PubMed  CAS  Google Scholar 

  • Fu R, Wall JD, Voordouw G (1994) DcrA, ac-type heme-containing methyl-accepting protein fromDesulfovibrio vulgaris Hildenborough, senses the oxygen concentration or redox potential of the environment. J Bacteriol 176:344–350

    PubMed  CAS  Google Scholar 

  • Fuchs G, Mohamed M, Altenschmidt U, Koch J, Lack A, Brackmann R, Lochmeyer R, Oswald B (1993) Biochemistry of anaerobic biodegradation of aromatic compounds. In: Ratledge C (ed) Biochemistry of microbial degradation. Kluwer, Dordrecht, pp 531–553

    Google Scholar 

  • Gilles-Gonzalez MA, Ditta GS, Helinski DR (1991) A hemoprotein with kinase activity encoded by the oxygen sensor ofRhizobium meliloti. Nature 350:170–172

    Article  PubMed  CAS  Google Scholar 

  • Giskov M, Molin S (1992) Expression of extracellular phospholipase fromSerratia liquefaciens is growth-phase-dependent, catabolite-repressed and regulated by anaerobiosis. Mol Microbiol 6:1363–1374

    Article  Google Scholar 

  • Green J, Guest JR (1993a) A role for iron in transcriptional activation by FNR. FEBS Lett 329:55–58

    Article  PubMed  CAS  Google Scholar 

  • Green J, Guest JR (1993b) Activation of FNR-dependent transcription by iron: an in vitro switch for FNR. FEMS Microbiol Lett 113:219–222

    Article  PubMed  CAS  Google Scholar 

  • Green J, Guest JR (1994) Regulation of transcription at thendh promoter ofEscherichia coli by FNR and novel factors. Mol Microbiol 12:433–444

    Article  PubMed  CAS  Google Scholar 

  • Green J, Trageser M, Six S, Unden G, Guest JR (1991) Characterization of the FNR protein ofEscherichia coli, an iron binding transcriptional regulator. Proc R Soc Lond [Biol] 244:137–144

    CAS  Google Scholar 

  • Green J, Sharrocks AD, Green B, Geisow M, Guest JR (1993) Properties of FNR proteins substituted at each of the five cysteine residues. Mol Microbiol 8:61–68

    Article  PubMed  CAS  Google Scholar 

  • Gross R, Arico B, Rappuoli R (1989) Families of bacterial signal-transducing proteins. Mol Microbiol 3:1661–1667

    Article  PubMed  CAS  Google Scholar 

  • Gunsalus RP (1992) Control of electron flow inEscherichia coli: coordinated transcription of respiratory pathway genes. J Bacteriol 174:7069–7074

    PubMed  CAS  Google Scholar 

  • Harborne NR, Griffiths L, Busby SJW, Cole JA (1992) Transcriptional control, translation and function of the products of the five open reading frames of theEscherichia coli nir operon. Mol Microbiol 6:2805–2813

    Article  PubMed  CAS  Google Scholar 

  • Harder J, Follmann H (1990) Identification of a free radical and oxygen dependence of ribonucleotide reductase in yeast. Free Radic Res Commun 10:281–286

    Article  PubMed  CAS  Google Scholar 

  • Hidalgo E, Demple B (1994) An iron-sulfur center essential for transcriptional activation by the redox-sensing SoxR protein. EMBO J 13:138–146

    PubMed  CAS  Google Scholar 

  • Hoeren FU, Berks BC, Ferguson SJ, McCarthy JEG (1993) Sequence and expression of the gene encoding the respiratory nitrous-oxide reductase fromParacoccus denitrificans. Eur J Biochem 218:49–57

    Article  PubMed  CAS  Google Scholar 

  • Hoitink CWG, Woudt LP, Turenhout JCM, Van de Kamp M, Canters GW (1990) Isolation and sequencing of theAlcaligenes denitrificans azurin-encoding gene: comparison with the genes encoding blue copper proteins fromPseudomonas aeruginosa andAlcaligenes faecalis. Gene 90:15–20

    Article  PubMed  CAS  Google Scholar 

  • Hussain H, Grove J, Griffiths L, Busby S, Cole J (1994) A sevengene operon essential for formate-dependent nitrite reduction to ammonia by enteric bacteria. Mol Microbiol 12:153–163

    Article  PubMed  CAS  Google Scholar 

  • Irvine AS, Guest JR (1993)Lactobacillus casei contains a member of the CRP-FNR family. Nucleic Acids Res 21:753

    PubMed  CAS  Google Scholar 

  • Iuchi S, Lin ECC (1988)arcA (dye), a global regulatory gene inEscherichia coli mediating repression of enzymes in aerobic pathways. Proc Natl Acad Sci USA 85:1888–1892

    Article  PubMed  CAS  Google Scholar 

  • Iuchi S, Lin ECC (1993) Adaptation ofEscherichia coli to redox environments by gene expression. Mol Microbiol 9:9–15

    Article  PubMed  CAS  Google Scholar 

  • Iuchi S, Cole ST, Lin ECC (1990) Multiple regulatory elements for theglpA operon encoding anaerobic glycerol-3-phosphate dehydrogenase and theglpD operon encoding aerobic glycerol-3-phosphate dehydrogenase inEscherichia coli: further characterization of respiratory control. J Bacteriol 172:179–184

    PubMed  CAS  Google Scholar 

  • Jennings MP, Beacham IR (1993) Co-dependent positive regulation of theansB promoter ofEscherichia coli by CRP and the FNR protein: a molecular analysis. Mol Microbiol 9:155–164

    Article  PubMed  CAS  Google Scholar 

  • Jensen LH (1974) X-ray structural studies of ferredoxin and related electron carriers. Annu Rev Biochem 43:461–474

    Article  PubMed  CAS  Google Scholar 

  • Jerlström PG, Lui J, Beacham IR (1987) Regulation ofEscherichia coli L-asparaginase II and L-aspartase by thefnr gene product. FEMS Microbiol Lett 41:127–130

    Article  Google Scholar 

  • Johnson MJ (1967) Aerobic microbial growth at low oxygen concentrations. J Bacteriol 94:101–108

    PubMed  CAS  Google Scholar 

  • Jones HM, Gunsalus RP (1987) Regulation ofEscherichia coli fumarate reductase (frdABCD) operon expression by respiratory electron acceptors and thefnr gene product. J Bacteriol 169: 3340–3349

    PubMed  CAS  Google Scholar 

  • Joshi M, Dikshit KL (1994) Oxygen dependent regulation ofVitreoscilla globin gene: evidence for positive regulation by FNR. Biochem Biophys Res Commun 202:535–542

    Article  PubMed  CAS  Google Scholar 

  • Kammler M, Schön C, Hantke K (1993) Characterization of the ferrous iron uptake system ofEscherichia coli. J Bacteriol 175:612–619

    Google Scholar 

  • Khoroshilova N, Beinert H, Kiley PJ (1995) Association of a polynuclear iron-sulfur center with a mutant FNR protein enhances DNA binding. Proc Natl Acad Sci USA 92:2499–2503

    Article  PubMed  CAS  Google Scholar 

  • Kiley PJ, Reznikoff W (1991) Fnr mutants that activate gene expression in the presence of oxygen. J Bacteriol 173:16–22

    PubMed  CAS  Google Scholar 

  • Kolesnikow W, Schröder I, Gunsalus RP (1992) Regulation ofnarK gene expression in response to anaerobiosis, nitrate, iron and molybdenum. J Bacteriol 174:7104–7111

    PubMed  CAS  Google Scholar 

  • Kullik I, Toledano MB, Tartaglia LA, Storz G (1995) Mutational analysis ofthe redox-sensitive transcriptional regulator OxyR: regions important for oxidation and transcriptional activation. J Bacteriol 177:1275–1284

    PubMed  CAS  Google Scholar 

  • Lambden PR, Guest JR (1976) Mutants ofEscherichia coli unable to use fumarate as an anaerobic electron acceptor. J Gen Microbiol 97:145–160

    PubMed  CAS  Google Scholar 

  • Lazazzera BA, Bates DM, Kiley PJ (1993) The activity of theEscherichia coli transcription factor FNR is regulated by a change in oligomeric state. Genes Dev 7:1993–2005

    PubMed  CAS  Google Scholar 

  • Li J, Stewart V (1992) Localization of upstream sequence elements required for nitrate and anaerobic induction offdn (formate dehydrogenase-N) operon expression inEscherichia coli K-12. J Bacteriol 174:4935–4942

    PubMed  CAS  Google Scholar 

  • Li J, Kustu S, Stewart V (1994) In vitro interaction of nitrate-responsive regulatory protein NarL with DNA target sequences in thefdnG, narG, narK andfrdA operon control regions ofEscherichia coli K-12. J Mol Biol 241:150–165

    Article  PubMed  CAS  Google Scholar 

  • Lin ECC, Iuchi S (1991) Regulation of gene expression in fermentative and respiratory systems inEscherichia coli and related bacteria. Annu Rev Genet 25:361–387

    Article  PubMed  CAS  Google Scholar 

  • Lutz S, Jacobi A, Schlensog V, Böhm R, Sawers G, Böck A (1991) Molecular characterization of an operon (hyp) necessary for the activity of the three hydrogenase isoenzymes inEscherichi coli. Mol Microbiol 5:123–135

    Article  PubMed  CAS  Google Scholar 

  • McInnes JI, Kim JE, Lian CJ, Soltes GA (1990)Actinobacillus pleuropneumoniae hlyX gene homology with thefnr gene ofEscherichia coli. J Bacteriol 72:4587–4592

    Google Scholar 

  • Melville SB, Gunsalus RP (1990) Mutations infnr that alter anaerobic regulation of electron transport-associated genes inEscherichia coli. J Biol Chem 256:18733–18736

    Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Müller-Breitkreutz K, Abrahams M, Winkler U (1991) Regulation der Biolumineszenz vonVibrio fischeri durch Anaerobiose und das FNR-Protein (abstract). Deutsche Gesellschaft Hygiene und Mikrobiologie

  • Nees DW, Stein PA, Ludwig RA (1988) TheAzorhizobium caulinodans nifA gene: identification of upstream-activating sequences including a new element, the ‘anaerobox’. Nucleic Acids Res 16:9839–9853

    PubMed  CAS  Google Scholar 

  • Neidhardt FC, Ingraham J, Schaechter, M (1990) Physiology of the bacterial cell. Sinauer, Sunderland

    Google Scholar 

  • Newman BM, Cole JA (1978) The chromosomal location and pleiotropic effects of mutations of thenirA + gene ofEscherichia coli: the essential role ofnirA + in nitrite reduction and in other anaerobic redox reactions. J Gen Microbiol 106: 1–12

    PubMed  CAS  Google Scholar 

  • Niehaus F, Hantke K, Unden G (1991) Iron content and FNR-dependent gene regulation inEscherichia coli. FEMS Microbiol Lett 84:319–324

    Article  CAS  Google Scholar 

  • Nishiyama M, Suzuki J, Kukimoto M, Ohnuki T, Horinouchi S, Beppu T (1993) Cloning and characterization of a nitrite reductase gene fromAlcaligenes faecalis and its expression inEscherichia coli. J Gen Microbiol 139:725–733

    PubMed  CAS  Google Scholar 

  • Park SJ, Tseng CP, Gunsalus RP (1995) Regulation of succinate dehydrogenase (sdhCDAB) operon expression inEscherichia coli in response to carbon supply and anaerobiosis: role of ArcA and Fnr. Mol Microbiol 15:473–482

    Article  PubMed  CAS  Google Scholar 

  • Piiper J, Scheid P (1981) Oxygen exchange in the metazoa. In: Gilbert DL (ed) Oxygen and living processes. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Rabin RS, Collins LA, Stewart V (1992) In vivo requirement of integration host factor fornar (nitrate reductase) operon expression inEscherichia coli K-12. Proc Natl Acad Sci USA 89: 8701–8705

    Article  PubMed  CAS  Google Scholar 

  • Rivers SL, McNairn E, Blasco F, Giordano G, Boxer DH (1993) Molecular genetic analysis of themoa operon ofEscherichia coli K-12 required for molybdenum cofactor biosynthesis. Mol Microbiol 8:1071–1081

    Article  PubMed  CAS  Google Scholar 

  • Rossmann R, Sawers G, Böck A (1991) Mechanism of regulation of the formate-hydrogen-lyase pathway by oxygen, nitrate and pH: definition of the formate regulon. Mol Microbiol 5:2807–2814

    Article  PubMed  CAS  Google Scholar 

  • Saffarini DA, Nealson KH (1993) Sequence and genetic characterization ofetrA, anfnr analog that regulates anaerobic respiration inShewanella putrfaciens MR-1. J Bacteriol 175:7938–7944

    PubMed  CAS  Google Scholar 

  • Sawers G (1993) Specific transcriptional requirements for positive regulation of the anaerobically induciblepfl operon by ArcA and FNR. Mol Microbiol 10:737–747

    Article  PubMed  CAS  Google Scholar 

  • Sawers G, Suppmann B (1992) Anaerobic induction of pyruvate formate-lyase gene expression is mediated by the ArcA and FNR proteins. J Bacteriol 174:3474–3478

    PubMed  CAS  Google Scholar 

  • Sawers RG (1991) Identification of molecular characterization of a transcriptional regulator fromPseudomonas aeruginosa PA01 exhibiting structural and functional similarity to the FNR protein ofEscherichia coli. Mol Microbiol 5:1469–1481

    Article  PubMed  CAS  Google Scholar 

  • Schirawski J, Unden G (1995) Anaerobic respiration ofBacillus macerans with fumarate, TMAO, nitrate and nitrite and regulation of the pathways by oxygen and nitrate. Arch Microbiol 163:148–154

    CAS  Google Scholar 

  • Schlüter A, Patschkowski T, Unden G, Priefer U (1992) TheRhizobium leguminosarum FNRN protein is functionally similar toEscherichia coli FNR and promotes heterologous oxygen-dependent activation of transcription. Mol Microbiol 6:33395–3404

    Article  Google Scholar 

  • Schröder I, Darie S, Gunsalus RP (1993) Activation of theEscherichia coli nitrate reductase (narGHJI) operon by NarL and FNR requires integration host factor. J Biol Chem 268:771–774

    PubMed  Google Scholar 

  • Sharrocks AD, Green J, Guest JR (1990) In vivo and in vitro mutants of FNR, the anaerobic transcriptional regulator ofEscherichia coli. FEBS Lett 270:119–122

    Article  PubMed  CAS  Google Scholar 

  • Shaw DJ, Rice DW, Guest JR (1983) Homology between CAP and Fnr, a regulator of anaerobic respiration inEscherichia coli. J Mol Biol 166:241–247

    Article  PubMed  CAS  Google Scholar 

  • Six S, Trageser M, Kojro E, Fahrenholz F, Unden G (1995) Reactivity of the N-terminal cysteine residues in active and inactive forms of FNR, an O2-responsive, Fe-containing transcriptional regulator ofEscherichia coli. J Inorg Biochem (in press)

  • Spiro S (1992) An FNR-dependent promoter fromEscherichia coli is active and anaerobically inducible inParacoccus denitrificans. FEMS Microbiol Lett 98:145–148

    Article  CAS  Google Scholar 

  • Spiro S, Guest JR (1987) Regulation and overexpression of thefnr gene ofEscherichia coli. J Gen Microbiol 133:3279–3288

    PubMed  CAS  Google Scholar 

  • Spiro S, Guest JR (1990) FNR and its role in oxygen-regulated gene expression inEscherichia coli. FEMS Microbiol Rev 75: 399–428

    Article  CAS  Google Scholar 

  • Spiro S, Guest JR (1991) Adaptive responses to oxygen-limitation inEscherichia coli. Trends Biochem Sci 16:310–314

    Article  PubMed  CAS  Google Scholar 

  • Spiro S, Roberts RE, Guest JR (1989) FNR-dependent repression of thendh gene ofEscherichia coli and metal ion requirement for FNR-regulated gene expression. Mol Microbiol 3:601–608

    Article  PubMed  CAS  Google Scholar 

  • Stock JB, Ninfa AJ, Stock AM (1989) Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev 53:450–490

    PubMed  CAS  Google Scholar 

  • Strauch KL, Lenk JB, Gamble BL, Miller CG (1985) Oxygen regulation inSalmonella typhimurium. J Bacteriol 161:673–680

    PubMed  CAS  Google Scholar 

  • Subczynski WK, Hyde JS, Kusumi A (1989) Oxygen permeability of phosphatidylcholine-cholesterol membranes. Proc Natl Acad Sci USA 86:4474–4478

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Harder J, Krook M, Jörnvall H, Sjöberg BM, Reichard P (1993) A possible glycine radical in anaerobic ribonucleotide reductase fromEscherichia coli: nucleotide sequence of the clonednrdD gene. Proc Natl Acad Sci USA 90:577–581

    Article  PubMed  CAS  Google Scholar 

  • Suppmann B, Sawers G (1994) Isolation and characterization of hypophosphite-resistant mutants ofEscherichia coli: identification of the FocA protein, encoded by thepfl operon as a putative formate transporter. Mol Microbiol 11:965–982

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Hattori T, Nakanishi T, Nohno T, Fujita N, Ishihame A, Taniguchi S (1994) Repression of in vitro transcription of theEscherichia coli fnr andnarX genes by FNR protein. FEBS Lett 340:59–64

    Article  PubMed  CAS  Google Scholar 

  • Trageser M, Unden G (1989) Role of cysteine residues and metal ions in the regulatory functioning of FNR, the transcriptional regulator of anaerobic respiration inEscherichia coli. Mol Microbiol 3:593–599

    Article  PubMed  CAS  Google Scholar 

  • Trageser M, Spiro S, Duchêne A, Kojro E, Fahrenholtz F, Guest JR, Unden G (1990) Isolation of intact FNR protein (Mr 30000) ofEscherichia coli. Mol Microbiol 4:21–27

    Article  PubMed  CAS  Google Scholar 

  • Tyson KL, Cole JA, Busby SJ (1994) Nitrite and nitrate regulation at the promoters of twoEscherichia coli operons encoding nitrite reductase: identification of common target heptamers for both NarP- and NarL-dependent regulation. Mol Microbiol 13:1045–1055

    Article  PubMed  CAS  Google Scholar 

  • Unden G (1988) Differential roles for menaquinone and demethylmenaquinone in anaerobic electron transport ofEscherichia coli and theirfnr-independent expression. Arch Microbiol 150:499–503

    Article  PubMed  CAS  Google Scholar 

  • Unden G, Duchêne A (1987) On the role of cyclic AMP and the FNR protein inEscherichia coli growing anaerobically. Arch Microbiol 147:195–200

    Article  PubMed  CAS  Google Scholar 

  • Unden G, Guest JR (1985) Isolation and characterization of the FNR protein, the transcriptional regulator of anaerobic electron transport inEscherichia coli. Eur J Biochem 146:193–199

    Article  PubMed  CAS  Google Scholar 

  • Unden G, Trageser M (1991), Oxygen regulated gene expression inEscherichia coli: control of anaerobic, respiration by the FNR protein. Antonie van Leeuwenhoek 59:65–76

    Article  PubMed  CAS  Google Scholar 

  • Unden G, Trageser M, Duchêne A (1990) Effect of positive redox potentials (>+400 mV) on the expression of anaerobic respiratory enzymes inEscherichia coli. Mol Microbiol 4:315–319

    Article  PubMed  CAS  Google Scholar 

  • Unden G, Becker S, Bongaerts J, Schirawski, Six S (1994) Oxygen regulated gene expression in facultatively anaerobic bacteria. Antonie Van Leeuwenhoek 66:3–23

    Article  PubMed  CAS  Google Scholar 

  • Walker MS, DeMoss JA (1994) NarL-phosphate must bind to multiple upstream sites to activate transcription from thenarG promoter ofEscherichia coli. Mol Microbiol 14:633–641

    Article  PubMed  CAS  Google Scholar 

  • Weber IT, Steitz TA (1987) Structure of a complex of catabolite gene activator protein and cyclic AMP refined at 2.5 Å resolution. J Mol Biol 198:311–326

    Article  PubMed  CAS  Google Scholar 

  • Winkler J, Eltis LD, Dwyer DF (1995) Tetrameric structure and cellular location of catechol 2,3-dioxygenase. Arch Microbiol 163:65–69

    PubMed  CAS  Google Scholar 

  • Wong KK, Kwan HS (1992) Transcription ofglpT ofEscherichia coli K12 is regulated by anaerobiosis andfnr. FEMS Microbiol Lett 94:15–18

    Article  CAS  Google Scholar 

  • Woods SA, Guest JR (1987) Differential roles of theEscherichia coli fumarases andfnr-dependent expression of fumarase B and aspartase. FEMS Microbiol Lett 48:219–224

    Article  CAS  Google Scholar 

  • Wu LF, Mandrand-Berthelot MA, Waugh R, Edmonds CJ, Holt SE Boxer DH (1989) Nickel deficiency gives rise to the defective hydrogenase phentotype ofhydC andfnr mutants inEscherichia coli. Mol Microbiol 3:1709–1718

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann A, Reimmann C, Galimand M, Haas D (1991) Anaerobic growth and cyanide synthesis ofPseudomonas aeruginosa depend onanr, a regulatory gene homologous withfnr ofEscherichia coli. Mol Microbiol 5:1483–1490

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Unden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unden, G., Becker, S., Bongaerts, J. et al. O2-Sensing and O2-dependent gene regulation in facultatively anaerobic bacteria. Arch. Microbiol. 164, 81–90 (1995). https://doi.org/10.1007/BF02525312

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02525312

Key words

Navigation