Advertisement

Ukrainian Mathematical Journal

, Volume 51, Issue 11, pp 1713–1728 | Cite as

Investigation of invariant deformations of integral manifolds of adiabatically perturbed completely integrable Hamiltonian systems. II

  • A. M. Samoilenko
  • Ya A. Prikarpatskii
Article

Abstract

By using the Cartan differential-geometric theory of integral submanifolds (invariant tori) of completely Liouville—Arnold integrable Hamiltonian systems on the cotangent phase space, we consider an algebraic-analytical method for the investigation of the corresponding mapping of imbedding of an invariant torus into the phase space. This enables one to describe analytically the structure of quasiperiodic solutions of the Hamiltonian system under consideration. We also consider the problem of existence of adiabatic invariants associated with a slowly perturbed Hamiltonian system.

Keywords

Riemannian Surface Hamiltonian System Symplectic Structure Hamiltonian Function Canonical Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Arnol’d,Additional Chapters of the Theory of Ordinary Differential Equations [in Russian], Nauka, Moscow (1978).Google Scholar
  2. 2.
    J. J. Duistermaat, “On global action-angles,”Comm. Pure Appl. Math.,33, 687–706 (1980).zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    N. N. Nekhoroshev, “Action-angle variables and their generalizations,”Tr. Mosk. Mat. Obshch.,26, 181–198 (1972).zbMATHGoogle Scholar
  4. 4.
    V. I. Arnol’d, V. V. Kozlov, and A. N. Nekhoroshev, “Mathematical aspects of classical and celestial mechanics,” in:VINITI Series in Contemporary Problems in Mathematics [in Russian], Vol. 3, VINITI, Moscow (1985).Google Scholar
  5. 5.
    V. I. Arnol’d,Mathematical Methods of Classical Mechanics [in Russian], Nauka, Moscow (1978).Google Scholar
  6. 6.
    C. Godbillon,Differential Geometry and Analytic Mechanics [Russian translation], Mir, Moscow (1960).Google Scholar
  7. 7.
    A. K. Prykarpats’kyi, M. M. Prytula, and I. V. Mykytyuk,Elements of the Theory of Differential-Geometric Structures and Dynamical Systems [in Ukrainian], UMK VO, Kiev (1988).Google Scholar
  8. 8.
    M. I. Kopych, Ya. A. Prykarpats’kyi, and R. V. Samulyak, “Adiabatic invariants of the generalized Henon—Heiles Hamiltonian system and the structure of the chaotic action,”Dopov. Akad. Nauk. Ukrainy, No. 2, 32–36 (1997).Google Scholar
  9. 9.
    N. Ercolani and E. D. Siggia, “Painleve property and geometry,”Physica D. 34, 303–346 (1989).zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    M. Blaszak and S. Wojciechowski-Rauch, “A generalized Henon-Heiles system and related integrable Newton equations,”J. Math. Phys.,35, No. 4, 1693–1709 (1994).zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    A. M. Samoilenko and Ya. A. Prykarpats’kyi, “Investigation of invariant deformations of integral manifolds of adiabatically perturbed completely integrable Hamiltonian systems. I,”Ukr. Mat. Zh.,51, No. 10, 1379–1390 (1999).CrossRefGoogle Scholar
  12. 12.
    N. N. Bogolyubov, Yu. A. Mitropol’skii, and A. M. Samoilenko,Method of Accelerated Convergence in Nonlinear Mechanics [in Russian], Naukova Dumka, Kiev (1969).Google Scholar
  13. 13.
    Yu. A. Mitropol’skii,Averaging Method in Nonlinear Mechanics [in Russian], Naukova Dumka, Kiev (1971).Google Scholar
  14. 14.
    A. M. Samoilenko, “Asymptotic method for investigation ofm-frequency oscillating systems,”Ukr. Mat. Zh.,50, No. 10, 1366–1387 (1998).zbMATHCrossRefGoogle Scholar
  15. 15.
    A. M. Samoilenko,Elements of the Mathematical Theory of Multifrequency Oscillations [in Russian], Nauka, Moscow (1987).Google Scholar
  16. 16.
    H. Cartan,Differential Calculus. Differential Forms [Russian translation], Mir, Moscow (1971).zbMATHGoogle Scholar
  17. 17.
    M. Blaszak,Multi-Hamiltonian Theory of Dynamical Systems, Springer, New York (1998).zbMATHGoogle Scholar
  18. 18.
    N. G. Chebotarev,Introduction to the Theory of Algebraic Functions [in Russian], Gostekhizdat, Moscow (1949).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • A. M. Samoilenko
    • 1
  • Ya A. Prikarpatskii
    • 1
  1. 1.Institute of MathematicsUkrainian Academy of SciencesKiev

Personalised recommendations