Ukrainian Mathematical Journal

, Volume 50, Issue 9, pp 1461–1463 | Cite as

On unitarizable modules over generalized Virasoro algebras

  • V. S. Mazorchuk
Brief Communications


We classify unitarizable modules with highest weight and unitarizable modules of an intermediate series over generalized Virasoro algebras.


Central Charge Module Versus Verma Module Irreducible Module Unitarizable Module 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Feigin and D. Fuchs, “Representations of the Virasoro algebra,” in: Representations of Lie Groups and Algebras, Adv. Stud. Cont. Math., Gordon and Breach, New York (1990), pp. 447–554.Google Scholar
  2. 2.
    D. Friedan, Z. Qui, and S. Shenker, “Conformai invariance, unitarity, and critical exponent in two dimensions,” Phys. Rev. Lett., 52, 1575–1578 (1984).CrossRefMathSciNetGoogle Scholar
  3. 3.
    P. Goddar, A. Kent, and D. Olive, “Unitary representations of the Virasoro and super-Virasoro algebras,” Commun. Math. Phys., 103, 105–119 (1986).CrossRefGoogle Scholar
  4. 4.
    V. Kac and M. Wakimoto, “Unitarizable highest weight representations of the Virasoro, Neveu-Schwarz, and Ramond algebras,” Lect. Notes Phys., 261, 345–371 (1986).CrossRefMathSciNetGoogle Scholar
  5. 5.
    V. Mazorchuk, “Classification of simple Harish-Chandra modules over a Q-Virasoro algebra,” Preprint No. 97–019, Bielefeld University, Bielefeld (1997).Google Scholar
  6. 6.
    J. Patera and H. Zassenhaus, “The higher rank Virasoro algebras,” Commun. Math. Phys., 136, 1–14 (1991).zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • V. S. Mazorchuk
    • 1
  1. 1.Kiev UniversityKiev

Personalised recommendations