Advertisement

Ukrainian Mathematical Journal

, Volume 51, Issue 12, pp 1850–1857 | Cite as

Direct methods for the approximate solution of systems of singular integral equations in the case of nonnegative partial indices

  • K. I. Malyshev
Article
  • 15 Downloads

Abstract

We justify direct methods for the approximate solution of systems of singular integral equations with Cauchy kernel on a unit circle in the case of nonnegative partial indices.

Keywords

Approximate Solution Unit Circle Vector Function Matrix Function Singular Integral Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. P. Vekua,Systems of Singular Integral Equations and Certain Boundary-Value Problems [in Russian], Nauka, Moscow (1970).Google Scholar
  2. 2.
    F. D. Gakhov,Boundary-Value Problems [in Russian], Nauka, Moscow (1977).zbMATHGoogle Scholar
  3. 3.
    K. I. Malyshev and N. Ya. Tikhonenko, “Direct methods for the approximate solution of operator equations with nonzero kernel,”Ukr. Mat. Zh.,50, No. 9, 1202–1213 (1998).zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    V. V. Ivanov,Theory of Approximation Methods and Its Application to the Numerical Solution of Singular Integral Equations [in Russian], Nauka, Moscow (1968).Google Scholar
  5. 5.
    N. P. Korneichuk,Exact Constants in Approximation Theory [in Russian], Nauka, Moscow (1986).Google Scholar
  6. 6.
    B. G. Gabdulkhaev,Optimal Approximations of Solutions of Linear Problems [in Russian], Kazan University, Kazan (1980).Google Scholar
  7. 7.
    S. Prässdorf,Einige Klassen singulärer Gleichungen, Birkhäuser, Basel (1974).Google Scholar
  8. 8.
    V. A. Zolotarevskii,Finite-Dimensional Methods for the Solution of Singular Integral Equations on Closed Integration Contours [in Russian], Shtiintsa, Kishinev (1991).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • K. I. Malyshev
    • 1
  1. 1.Odessa UniversityOdessa

Personalised recommendations