Ukrainian Mathematical Journal

, Volume 51, Issue 12, pp 1939–1944 | Cite as

coadjoint orbits of compact Lie groups and generalized stereographic projection

  • T. V. Skrypnik
Brief Communications


We generalize the notion of stereographic projection to the case of an arbitrary compact Lie group and find the explicit form of the local complex parametrization of an orbit of the corresponding group.


Stereographic Projection Cartan Subalgebra Cartan Subgroup Geometric Quantization COADJOINT Orbit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. I. Golod and A. U. Klimyk,Mathematical Foundations of Symmetry Theory [in Ukrainian], Naukova Dumka, Kiev (1992).Google Scholar
  2. 2.
    N. E. Hurt,Geometric Quantization in Action, Reidel, Dordrecht (1983).zbMATHGoogle Scholar
  3. 3.
    A. A. Kirillov, “Geometric quantization,”Dinam. Sist.,4, 141–176 (1985).MathSciNetGoogle Scholar
  4. 4.
    P. I. Golod and T. V. Skrypnik, “Explicit realization of irreducible representations of compact Lie groups in the spaces of secant linear fiber bundles,”Ukr. Mat. Zh.,50, No. 10, 1316–1323 (1998).zbMATHCrossRefGoogle Scholar
  5. 5.
    G. Warner,Harmonic Analysis on Semisimple Lie Groups, Springer, Berlin (1972).Google Scholar
  6. 6.
    F. R. Gantmakher,Theory of Matrices [in Russian], Nauka, Moscow (1988).zbMATHGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • T. V. Skrypnik
    • 1
  1. 1.Bogolyubov Institute for Theoretical PhysicsUkrainian Academy of SciencesKiev

Personalised recommendations