Advertisement

Ukrainian Mathematical Journal

, Volume 51, Issue 12, pp 1892–1916 | Cite as

Rate of convergence of a group of deviations on sets of\(\bar \psi - {\rm{INTEGRALS}}\)

  • A. I. Stepanets
Article
  • 10 Downloads

Abstract

We study functionals that characterize the strong summation of Fourier series on sets of\(\bar \psi - {\rm{INTEGRALS}}\) in the uniform and integral metrics. As a result, we obtain estimates exact in order for the best approximations of functions from these sets by trigonometric polynomials.

Keywords

Fourier Series Trigonometric Polynomial Arbitrary Positive Number Strong Summability Good Approxima 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. I. Stepanets, “Rate of convergence of Fourier series on the classes of\(\bar \psi - {\rm{INTEGRALS}}\),”Ukr. Mat. Zh.,49, No. 8, 1069–1113 (1997).zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    A. I. Stepanets, “Approximation of\(\bar \psi - {\rm{INTEGRALS}}\) of periodic functions by Fourier sums (small smoothness). I,”Ukr. Mat. Zh.,50, No. 2, 274–291 (1998).zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    A. I. Stepanets, “Approximation of\(\bar \psi - {\rm{INTEGRALS}}\) of periodic functions by Fourier sums (small smoothness). II,”Ukr. Mat. Zh.,50, No. 3, 338–400 (1998).CrossRefMathSciNetGoogle Scholar
  4. 4.
    N. L. Pachulia and A. I. Stepanets, “Strong summability of Fourier series on the classes of (ψ, β)-differentiable functions,”Mat. Zametki. 44, No. 4, 506–516 (1988).zbMATHMathSciNetGoogle Scholar
  5. 5.
    A. I. Stepanets and N. L. Pachulia, “On the behavior of a group of deviations on the sets of (ψ, β)-differentiable functions,βUkr. Mat. Zh.,40, No. 1, 101–105 (1988).CrossRefMathSciNetGoogle Scholar
  6. 6.
    A. I. Stepanets,Classification and Approximation of Periodic Functions [in Russian], Naukova Dumka, Kiev (1987).zbMATHGoogle Scholar
  7. 7.
    V. K. Dzyadyk,Introduction to the Theory of Uniform Polynomial Approximation of Functions [in Russian], Nauka, Moscow (1977).Google Scholar
  8. 8.
    G. N. Hardy and J. E. Littlewood, “Sur la série de Fourier d’une fonction à carré summable,”C. R. Acad. Sei., Ser. A,153, 1307–1309 (1913).Google Scholar
  9. 9.
    G. N. Hardy and J. E. Littlewood, “On the strong summability of Fourier series,”Proc. London Math. Soc.,26, 273–286 (1926).CrossRefGoogle Scholar
  10. 10.
    A. I. Stepanets, “Several statements for convex functions,”Ukr. Mat. Zh.,51, No. 5, 688–702 (1999).zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • A. I. Stepanets
    • 1
  1. 1.Institute of MathematicsUkrainian Academy of SciencesKiev

Personalised recommendations