Ukrainian Mathematical Journal

, Volume 51, Issue 12, pp 1858–1874 | Cite as

Technical stability of autonomous control systems with variable structure

  • K. S. Matviichuk


We obtain conditions for the technical stability of autonomous dynamical systems with discontinuous control with respect to a given measure.


Cauchy Problem Variable Structure Lyapunov Function Function Versus Negative Real Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. A. Barbashin,Introduction to Stability Theory [in Russian], Nauka, Moscow (1967).Google Scholar
  2. 2.
    S. V. Emel’yanov, V. I. Utkin, V. A. Taran, N. E. Kostileva, A. I. Shubladze, V. B. Ezerov, and E. N. Dubrovskii,Theory of Systems with Variable Structure [in Russian], Nauka, Moscow (1970).zbMATHGoogle Scholar
  3. 3.
    V. I. Utkin,Sliding Modes in Problems of Optimization and Control [in Russian], Nauka, Moscow (1989).Google Scholar
  4. 4.
    G. I. Lozgachev, “On the construction of Lyapunov functions for systems with variable structure,”Avtomat. Telemekh., No. 8, 161–162 (1972).Google Scholar
  5. 5.
    V. I. Zubov,Lectures on Control Theory [in Russian], Nauka, Moscow (1975).Google Scholar
  6. 6.
    L. T. Ashchepkov,Optimal Control over Discontinuous Systems [in Russian], Nauka, Novosibirsk (1987).Google Scholar
  7. 7.
    A. S. Meshchanov, “Application of the method of Lyapunov functions to the construction of discontinuous controls,” in:Method of Lyapunov Functions in the Dynamics of Nonlinear Svstems [in Russian], Nauka, Novosibirsk (1983), pp. 102–110.Google Scholar
  8. 8.
    A. F. Filippov,Differential Equations with Discontinuous Right-Hand Side [in Russian], Nauka, Moscow (1985).zbMATHGoogle Scholar
  9. 9.
    M. M. Khapaev, “Controllability conditions for singularly perturbed systems with singular controls,”Dokl. Akad. Nauk SSSR,320, No. 2, 300–302 (1991).Google Scholar
  10. 10.
    G. I. Kamenkov, “Stability on a finite time interval,”Prikl. Mat. Mekh.,17, Issue 5, 529–540 (1953).zbMATHMathSciNetGoogle Scholar
  11. 11.
    N. F. Kirichenko,Specific Problems of Stability and Controllability of Motion [in Russian], Kiev University, Kiev (1972).Google Scholar
  12. 12.
    F. G. Garashchenko and N. F. Kirichenko, “Investigation of problems of practical stability and stabilization of motion,”Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, No. 6, 15–24 (1975).Google Scholar
  13. 13.
    F. G. Garashchenko, “Specific problems of dynamical stability and their applications,”Vychisl. Prikl. Mat., Issue 46, 106–112 (1982).Google Scholar
  14. 14.
    V. M. Kuntsevich and M. M. Lychak,Synthesis of Systems of Automatic Control with the Use of Lyapunov Functions [in Russian], Nauka, Moscow (1977).Google Scholar
  15. 15.
    K. S. Matviichuk, “Technical stability of controlled processes with lumped parameters,”Prikl. Mekh.,33, No. 2, 74–79 (1997).MathSciNetGoogle Scholar
  16. 16.
    K. S. Matviichuk, “Technical stability of the process of motion of two connected platforms carrying moving flywheels,”Izv. Ros. Akad. Nauk. Mekh. Tverd. Tela. No. 6, 3–10 (1993).Google Scholar
  17. 17.
    K. S. Matviichuk, “Technical stability of parametrically excited distributed processes,”Prikl. Mat. Mekh.,50, Issue 2, 210–218 (1986).MathSciNetGoogle Scholar
  18. 18.
    V. M. Matrosov, L. Yu. Anapol’skii, and S. N. Vasil’ev,Comparison Method in the Mathematical Theory of Systems [in Russian], Nauka, Novosibirsk (1980).Google Scholar
  19. 19.
    S. N. Vasil’ev, “Controllability of nonlinear systems under phase restrictions and constantly acting perturbations,”Izv. Ros. Akad. Nauk, Tekhn. Kibern., No. 1, 77–82 (1993).Google Scholar
  20. 20.
    B. I. Babkin, “On the Chaplygin theorem on differential inequalities,”Mat. Sb.,46, No. 4, 389–398 (1958).MathSciNetGoogle Scholar
  21. 21.
    J. Szarski,Differential Inequalities, PWN, Warszawa (1967).zbMATHGoogle Scholar
  22. 22.
    B. Skalmierski and A. Tylikowski,Stabilnosc Ukladow Dynamicznych, PWN, Warszawa (1973).Google Scholar
  23. 23.
    M. A. Lavrent’ev and L. A. Lyusternik,Foundations of Variational Calculus [in Russian], Vol. 1, Part 1, ONTI, Moscow-Leningrad (1935).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • K. S. Matviichuk
    • 1
  1. 1.Institute of MechanicsUkrainian Academy of SciencesKiev

Personalised recommendations