Environmental Geology and Water Sciences

, Volume 8, Issue 4, pp 229–236 | Cite as

Water chemistry and sedimentological observations in littlefield lake, michigan: Implications for lacustrine marl deposition

  • Nina M. Duston
  • Robert M. Owen
  • Bruce H. Wilkinson


A combination of both water chemistry and sedimentological information was used to investigate the carbonate-producing mechanism in Littlefield Lake, a small lake located in Isabella County, central Michigan. Data on temperature, dissolved oxygen, pH, calcium carbonate (CaCO3) saturation, alkalinity, calcium, and magnesium were obtained on a monthly basis over a 13-month period, with each parameter determined at 1m intervals over a depth range of 20m. The loss of dissolved carbon dioxide (CO2) from warm surface waters during direct degassing, and to a lesser extent during photosynthetic uptake by lacustrine macrophytes and phytoplankton during the summer, results in massive precipitation of the low-magnesium calcite which predominates in all Littlefield Lake sedimentary facies However, despite the fact that carbonate precipitation in this rather typical temperate-region marl lake is directly related to, and may be driven by, seasonal variation in these physiochemical parameters, most calcite forms as encrustations around cyanophytic and chlorophytic macrophytes. Such relationships demonstrate that carbonate precipitation in marl lakes may result from complex interactions between both biochemical and physiochemical processes. As such, marl formation in this, and probably many other calcareous lake systems, can not be simply ascribed to one or the other of these two general mechanisms.


Lake Basin Carbonate Precipitation Oncoids Carbonate Saturation Meromictic Lake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Binkley, K. L., B. H. Wilkinson, and R. M. Owen, 1980, Vadose beachrock cementation along a southeastern Michigan marl lake: J. Sed. Petrol. v. 50:953–962.Google Scholar
  2. Brunskill, G. J., 1968, Fayetteville Green Lake, New York. I. Physical and chemical limnology. II. Precipitation and sedimentation of calcite in a meromictic lake with laminated sediments: Unpublished Ph.D. thesis, Cornell University, Ithaca, NY, 172 p.Google Scholar
  3. Brunskill, G. J., 1969, Fayetteville Green Lake, New York. II. Precipitation and sedimentation of calcite in a meromictic lake with laminated sediments: Limnol. Oceanogr., v. 14(6):830–847.Google Scholar
  4. Brunskill, G. J., and S. D. Ludlam, 1969, Fayetteville Green Lake, New York. I. Physical and chemical limnology: Limnol. Oceanogr., v. 14(6):817–829.Google Scholar
  5. Cloud, P. E., Jr., 1962, Environment of calcium carbonate deposition west of Andros Island, Bahamas: U.S. Geol. Survey, Prof. Pap. No. 350, 138 p.Google Scholar
  6. Culver, D. A., and G. J. Brunskill, 1969, Fayetteville Green Lake, New York. V. Studies of primary production and zooplankton in a meromictic marl lake: Limnol Oceanogr. v. 14(6):862–873.Google Scholar
  7. Davis, C. A., 1900a, A contribution to the natural history of marl: J. Geol., v. 8(6):485–497.Google Scholar
  8. Davis, C. A., 1990b, A remarkable marl lake: J. Geol., v. 8(6):498–503.Google Scholar
  9. Davis, C. A., 1901, A second contribution to the natural history of marl: J. Geol. v. 9(6):491–506.Google Scholar
  10. Dean, W. E., 1981, Carbonate minerals and organic matter in sediments of north temperature hard-water lakes.In F. G. Ethridge and R. M. Flores, eds., Recent and ancient non-marine depositional environments: models for exploration: SEPM Spec. Pub. No. 31, p. 213–231.Google Scholar
  11. Drever, J. I., 1982, The Geochemistry of Natural Waters: Englewood Cliffs, N.J., Prentice-Hall, Inc., 388 p.Google Scholar
  12. Duston, N. M., 1984, Water chemistry, sediment chemistry, and carbonate sedimentation in Littlefield Lake, Michigan: implications for production and diagenesis of lacustrine carbonates: Unpublished Ph.D. thesis, The University of Michigan, Ann Arbor, MI 151 p.Google Scholar
  13. Eggleston, J. R., and W. E. Dean, 1976, Freshwater stromatolitic bioherms in Green Lake, New York.In M. R. Walter, ed., Stromatolites: Amsterdam, Elsevier Scientific Publ. Co., p. 479–488.Google Scholar
  14. EPA, 1971, Onodaga (N.Y.) Lake study: Water Pollution Control Research Series, Environmental Protection Agency, Water Quality Offie, U.S. Government Printing Office, Washington, D.C., 461 p.Google Scholar
  15. Gilbert, R., and S. M. Lask, 1981, Factors affecting marl deposition in Knowlton Lake, Southeastern Ontario: J. Great Lakes Res., v. 7(3):286–289.Google Scholar
  16. Imboden, D. M., and A. Lerman, 1978, Chemical models of lakes.In A. Lerman, ed., Lakes: chemistry, geology, physics: New York, Springer-Verlag, p. 341–356.Google Scholar
  17. Kelts, K., and K. J. Hsu, 1978, Freshwater carbonate sedimentation.In A. Lerman, ed., Lakes: physics, chemistry, geology: New York, Springer-Verlag, p. 295–323.Google Scholar
  18. Megard, R. O., 1967. Limnology, primary productivity, and carbonate sedimentation of Minnesota lakes: Univ. Minn. Limnol. Res. Center Inter. Rept. No. 1, 69 p.Google Scholar
  19. Megard, R. O., 1968, Planktonic photosynthesis and the environment of calcium carbonate deposition in lakes: Univ. Minn. Limnol. Res. Center Inter. Rept. No. 2, 47 p.Google Scholar
  20. Muller, B., 1968, Exceptionally high Sr concentrations in freshwater onkolites and mollusk shells of Lake Constance.In G. Muller and G. M. Friedman, eds. Recent developments in carbonate sedimentology in Central Europe: New York, Springer Verlag, p. 116–127.Google Scholar
  21. Murphy, D. H., and B. H. Wilkinson, 1980, Carbonate deposition and facies distribution in a central Michigan marl lake: Sedimentol. v. 27:123–135.CrossRefGoogle Scholar
  22. Neumann, A. C., and L. S. Land, 1975, Lime mud deposition and calcareous algae in the Bight and Abaco, Bahamas: a budget: J. Sed. Petrol. v. 50:953–962.Google Scholar
  23. Newcombe, C. L., and J. V. Slater, 1950, Environmental factors of Sodon, Lake—a dichothermic lake in Southeastern Michigan: Ecol. Monographs v. 20(3):207–227.CrossRefGoogle Scholar
  24. Owen, R. M., and B. H. Wilkinson, 1983, Mineralogical and biological controls on the Fe/Ca and Mn/Ca ratios of lacustrine carbonate allochems: Chem. Geol. v. 38:175–181.CrossRefGoogle Scholar
  25. Pytkowicz, R. M., 1965, Rates of inorganic calcium carbonate nucleation: J. Geol. v. 73(1):196–199.CrossRefGoogle Scholar
  26. Ragotzkie, R. A., 1978, Heat budgets of lakes.In A. Lerman, ed., Lakes: chemistry, geology, physics: New York, Springer-Verlag p. 1–20.Google Scholar
  27. Reynolds, R. C., Jr., 1978, Polyphenol inhibition of calcite precipitation in Lake Powell: Limnol Oceanogr., v. 23(4):585–597.Google Scholar
  28. Rich, P. H., R. G. Wetzel, and N. Van Thuy, 1971, Distribution, production and role of aquatic macrophytes in a southern Michigan marl lake: Freshwat. Biol., v. 1:3–21.CrossRefGoogle Scholar
  29. Strong, A. E., and B. J. Eadi, 1978, Satellite observations of calcium carbonate precipitations in the Great Lakes: Limnol Oceanogr. v. 23(5):877–887.Google Scholar
  30. Takahashi, T., W. Broecker, Y. H. Li, and D. Thruber, 1968. Chemical and isotopic balances for a meromictic lake: Limnol. Oceanogr., v. 13:272–292.CrossRefGoogle Scholar
  31. Terlecky, P. M., Jr., 1974, The origin of a late Pleistocene and Holocene marl deposit: J. Sed. Petrol., v. 44(2):456–465.Google Scholar
  32. Treese, T. N., R. M. Owen, and B. H. Wilkinson, 1981, Sr/Ca and Mg/Ca ratios in polygenetic carbonate allochems from a Michigan marl lake: Geochim. Cosmochim. Acta. v. 45:439–445.CrossRefGoogle Scholar
  33. Wetzel, R. G., 1960, Marl encrustations on hydrophytes in several Michigan lakes. Oikos v. 11(2):223–236.Google Scholar
  34. Wetzel, R. G., 1970, Recent and postglacial production rates of a marl lake. Limnol. Oceanogr. v. 15(4):491–503.Google Scholar
  35. Wetzel, R. G., 1975, Limnology: Philadelphia, W. B. Saunders, 743 p.Google Scholar
  36. Wetzel, R. G., P. H. Rich, M. C. Miller, and H. L. Allen, 1972, Metabolism of dissolved and particulate detrital carbon in a temperate hardwater lake: Mem. Ist. Ital. Idrobiol., Suppl. v. 29:185–243.Google Scholar
  37. Wilkinson, B. H., B. N. Popp, and R. M. Owen, 1980, Near-shore ooid formation in a modern temperate region marl lake: J. Geol. v. 88:697–704.Google Scholar

Copyright information

© Springer-Verlag New York Inc 1986

Authors and Affiliations

  • Nina M. Duston
    • 1
  • Robert M. Owen
    • 2
  • Bruce H. Wilkinson
    • 3
  1. 1.Department of Atmospheric and Oceanic ScienceThe University of MichiganAnn Arbor
  2. 2.Department of Atmospheric and Oceanic Science Department of Geologic SciencesThe University of MichiganAnn Arbor
  3. 3.Department of Geological SciencesThe University of MichiganAnn Arbor

Personalised recommendations