Skip to main content
Log in

Light effects on α-amylase activity and carbohydrate content in relation to lipid mobilization during the seedling growth of sunflower

  • Original Articles
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

The changes in α-amylase activity and in starch and free sugar content were investigated in correlation with lipid mobilization inHelianthus annuus during the first 15 days of seedling growth in discontinuous light and in darkness. Throughout the seedling development α-amylase activity increased more significantly in light than in darkness. It was always lower in cotyledons than in other tissues of the embryo axis. In both culture conditions, most of the transitory carbohydrates accumulated in germinating cotyledons were very likely synthesized by gluconeogenesis from the stored lipid breakdown. Nevertheless, in light-grown cotyledons, photosynthesis contributes to increase the carbohydrate levels. The study of several soluble sugars indicates that 1) sucrose stored in cotyledons of mature seeds was used at the onset of seedling growth, more rapidly in light than in darkness, 2) galactose and xylose, both involved as precursors of some cell-wall polysaccharides, remained at a very low level throughout the 15 days and 3) glucose, fructose and maltose accumulated in old etiolated cotyledons in contrast to what occurred in the light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, C.A., Rinne, R.W. andFjerstad, M.C. 1980. Starch deposition and carbohydrase activities in developing and germinating soya bean seeds. Ann. Bot.54: 577–582.

    Google Scholar 

  • Akazawa, T. andOkamoto, K. 1980. Biosynthesis and metabolism of sucrose.In J. Preiss, ed., The Biochemistry of Plants, vol. 3, Carbohydrates: Structure and Function, Academic Press, New York London, pp. 199–219.

    Google Scholar 

  • Allfrey, J.M. andNorthcote, D.H. 1977. The effects of the axis and plant hormones on themobilization of storage materials in the ground-nut (Arachis hypogaea) during germination, New Phytol.78: 547–563.

    Article  CAS  Google Scholar 

  • Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase inBeta vulgaris. Plant physiol.24: 1–15.

    PubMed  CAS  Google Scholar 

  • Bernfeld, P. 1955. Amylases α and β,In Colowick and Capla, eds., Methods in Enzymology I, Academic Press, pp. 149–158.

  • Bewley, J.D., Leung, D.W.M., Maclsaac, S., Reid, J.S.G. andXu, N. 1993. Transient starch accumulation in the cotyledons of fenugreek seeds during galactomannan mobilization from the endosperm. Plant Physiol. Biochem.31: 483–490.

    CAS  Google Scholar 

  • Bradbeer, C. andStumpf, P.K. 1959. Fat metabolism in higher plants. XI. The conversion of fat into carbohydrate in peanut and sunflower seedlings. J. Biol. Chem.234: 498–501.

    PubMed  CAS  Google Scholar 

  • Brown, C.S. andHuber, S.C. 1987. Photosynthesis, reserve mobilization and enzymes of sucrose metabolism in soybean (Glycine max) cotyledons. Physiol. Plant.70: 537–543.

    Article  CAS  Google Scholar 

  • Brown, C.S. andHuber, S.C. 1988. Reserve, mobilization and starch formation in soybean (Glycine max) cotyledons in relation to seedling growth. Physiol. Plant.72: 518–524.

    CAS  Google Scholar 

  • Chapman, J.M. andGalleschi, L. 1985. The control of food mobilization in seeds ofCucumis sativus L. VI. The production of starch. Ann. Bot.55: 29–34.

    CAS  Google Scholar 

  • Chenevard, D., Frossard, J.S. andLacointe, A. 1994. Lipid utilization and carbohydrate partitioning during germination of English walnut (Juglans regia). Ann. Sci. For.51: 373–379.

    Google Scholar 

  • Crawshaw, L.A. andReid, J.S.G. 1984. Changes in cellwall polysaccharides in relation to seedling development and the mobilization of reserves in the cotyledons ofLupinus angustifolius cv. Unicrop. Planta160: 449–454.

    Article  CAS  Google Scholar 

  • Davies, H.V., Gaba, V., Black, M. andChapman J.M. 1981. The control of food mobilisation in seeds ofCucumis sativus L. V. The effect of light on lipid degradation. Planta152: 70–73.

    Article  CAS  Google Scholar 

  • Davies, H.V. andSlack, P.T. 1981. The control of food mobilization in seeds of Dicotyledonous plants. New Phytol.888: 41–51.

    Google Scholar 

  • Doehlert, D.C. andDuke, S.H. 1983. Specific determination of α-amylase activity in crude plant extracts containing β-amylase. Plant Physiol.71: 229–234.

    PubMed  CAS  Google Scholar 

  • Doman, D.C., Walker, J.C., Trelease, R.N. andMoore, B.D. 1982. Metabolism of carbohydrate and lipid reserves in germinated cotton seeds. Planta155: 502–510.

    Article  CAS  Google Scholar 

  • Greenwood, C.T. andMilne, E.A. 1968. Studies on starch-degrading enzymes. VII. Properties and action-pattern of the α-amylase from barley, oats, rye and wheat. Stärke20: 101–107.

    Article  CAS  Google Scholar 

  • Haissing, B.E. andDickson, R.E. 1979. Starch measurement in plant tissue using enzymatic hydrolysis. Physiol. Plant.47: 151–157.

    Article  Google Scholar 

  • Halmer, P. 1985. The mobilization of storage carbohydrates in germinated seeds. Physiol. Vèg.23: 107–125.

    CAS  Google Scholar 

  • Heupel, T. andKutschera, U. 1996. Pigment accumulation, dark respiration and photosynthesis during the greening of sunflower cotyledons. J. Plant Physiol.147: 567–572.

    CAS  Google Scholar 

  • Hildebrand, D.F. andHymowitz, T. 1981. Role of β-amylase in starch metabolism during soybean seed development and germination. Physiol. Plant.53: 429–434.

    Article  CAS  Google Scholar 

  • Jones, R.L. andArmstrong, J.E. 1971. Evidence for osmotic regulation of hydrolytic enzyme production in germinating barley seeds. Plant Physiol.48: 137–142.

    PubMed  CAS  Google Scholar 

  • Kagawa, T., McGregor, D.I. andBeevers, H. 1973. Development of enzymes in the cotyledons of watermelon seedling. Plant Physiol.51: 66–71.

    PubMed  CAS  Google Scholar 

  • Kandler, O. andHopf, H. 1980. Occurrence, metabolism, and function of oligosaccharides.In J. Preiss, ed., The Biochemistry of Plants, vol. 3 Carbohydrates: Structure and Function, Academic Press, New York London, pp. 221–270.

    Google Scholar 

  • Kohno, A. andNanmori, T. 1992. Changes in α-and β-amylase activities during seed germination of clover (Trifolium repens). Bot. Mag. Tokyo105: 167–170.

    Article  CAS  Google Scholar 

  • Kutschera, U. 1990. Cell-wall synthesis and elongation growth in hypocotyls ofHelianthus annuus L. Planta181: 316–323.

    Article  Google Scholar 

  • Lane, H.C. andHesketh, J.D. 1977. Cotyledons photosynthesis during seedling growth of cotton,Gossipium hirsutum L. Amer. J. Bot.64: 786–790.

    Article  CAS  Google Scholar 

  • Lowry, O.H., Rosebrough, N.J. andRandall, R.J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem.193: 265–275.

    PubMed  CAS  Google Scholar 

  • MacGregor, A.W., Dushnicky, L.G., Schroeder, S.W. andBallance, G.M. 1994. Changes in barley endosperms during early stages of germination. J. Inst. Brew.100: 85–90.

    CAS  Google Scholar 

  • Mazliak, P. andTchang, F. 1983. Installation et utilisation des réserves lipidiques dans les graines oléagineuses. Bull. Soc. Bot. Fr., Actual. Bot.130: 49–56.

    Google Scholar 

  • Minamikawa, T., Yamauchi, D., Wada, S. andTakeuchi, H. 1992. Expression of α-amylase inPhaseolus vulgaris andVigna mungo plants. Plant Cell Physiol.33: 253–258.

    CAS  Google Scholar 

  • Mori, H., Tatematsu, A., Matsui, H., Takayanagi, T., Honma, M. andChiba, S. 1992. Starch-hydrolyzing enzymes in germinating kidney bean. Biosci. Biotech. Biochem.56: 1499–1500.

    Article  CAS  Google Scholar 

  • Morohashi, Y. 1982. Control of development of amylolytic and proteolytic activities in cotyledons of germinating black gram seeds. Physiol. Plant.56: 189–193.

    Article  CAS  Google Scholar 

  • Ogren, W.L. and Rinne, R.W. 1973. Photosynthesis and seed metabolism.In B.E. Caldwell, ed., Soybean: Improvement, Production and Uses. Chapter 11, pp. 391–416.

  • Parys, E., Romanowska, E. andPoskuta, J. 1983. Amylase activities in attached and excised cotyledons and in embryonic axes ofPisum sativum L. Plant Cell Physiol.24: 181–188.

    CAS  Google Scholar 

  • Pfeiffer, I. andKutschera, U. 1996. Sucrose metabolism and lipid mobilization during light-induced expansion of sunflower cotyledons. J. Plant Physiol.147: 553–558.

    CAS  Google Scholar 

  • Pogson, B.J., Ashford, A.E. andGubler, F. 1989. Immunofluorescence localization of α-amylase in the scutellum, germ aleurone and normal aleurone of germinated barley grains. Protoplasma151: 128–136.

    Article  Google Scholar 

  • Pongratz, P. andBeck, E. 1978. Diurnal oscillation of amylolytic activity in spinach chloroplasts. Plant physiol.62: 687–689.

    PubMed  CAS  Google Scholar 

  • Preiss, J. andLevi, C. 1980. Starch biosynthesis and degradation.In J. Preiss, ed., The Biochemistry of Plants, vol. 3, Carbohydrates: Structure and Function, Academic Press, New York London, pp. 371–423.

    Google Scholar 

  • Reibach, P.H. andBenedict, C.R. 1980. Synthesis of starch in proplastids of germinatingR. communis. (Abstr.). Plant Physiol.65: (suppl.) 115.

    Google Scholar 

  • Rinderknecht, H., Wilding, P. andHaverback, B.J. 1967. A new method for the determination of α-amylase. Experientia23: 805.

    Article  PubMed  CAS  Google Scholar 

  • Tarrago, J.F. andNicolas, G. 1976. Starch degradation in the cotyledons of germinating lentils. Plant Physiol.58: 618–621.

    Article  PubMed  Google Scholar 

  • Tchang, F., Robert, D. andMazliak, P. 1980. Utilisation des réserves lipidiques et formation de glyxysomes et d'étioplastes dans les cotylédons de tournesol (Helianthus annuus L). Physiol. Vég.18: 117–130.

    CAS  Google Scholar 

  • Tchang, F., Robert, D. andMazliak, P 1981. Utilisation des réserves lipidiques, formation des peroxysomes et des chloroplastes dans les cotylédons de semences de tournesol (Helianthus annuus L.) germant à la lumière. Physiol. Vég.19: 9–22.

    CAS  Google Scholar 

  • Theimer, R.R., Anding, G. andMatzner, P. 1976. Kinetin action on the development of microbody enzymes in sunflower cotyledons in the dark. Planta128: 41–47.

    Article  CAS  Google Scholar 

  • Thévenot, C., Laurière, C., Mayer, C., Simmon-Côte, E. andDaussant, J. 1992. α-amylase changes during development and germination of maize kernels. J. Plant Physiol.140: 61–65.

    Google Scholar 

  • Trémolières, A. 1984. Regulation de la synthèse des acides gras insaturés en fonction de la température dans quelques tissus végétaux. Oléagineux39: 227–231.

    Google Scholar 

  • Van Onckelen, H.A., Caubergs, R. andDe Greef, J.A. 1977. Effect of light treatment and endogenous growth hormones on α-and β-amylase activities in cotyledons ofPhaseolus vulgaris L. Plant Cell Physiol.18: 1029–1040.

    Google Scholar 

  • Yamasaki, Y. andSuzuki, Y. 1979. Purification and proporties of an α-amylase from germinating seeds ofPhaseolus vidissimus Ten. Plant Cell Physiol.20: 553–562.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darbelley, N., Razafindramboa, N., Chambost, JP. et al. Light effects on α-amylase activity and carbohydrate content in relation to lipid mobilization during the seedling growth of sunflower. J. Plant Res. 110, 347–356 (1997). https://doi.org/10.1007/BF02524933

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02524933

Key words

Navigation