Il Nuovo Cimento C

, Volume 1, Issue 2, pp 136–146 | Cite as

Nonlinear internal waves in a stratified fluid in a closed basin

  • M. Falcioni
  • A. Sutera
  • F. Zirilli


The problem of two layers of homogeneous inviscid incompressible fluid of density ϱ1 and ϱ212) separated by a free surface in a closed basin is studied via a variational principle. A system of ordinary differential equations in the time variable, which approximate the original problem, is derived and discussed.


Free Surface Ordinary Differential Equation Variational Principle Euler Equation Velocity Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Si usa un principio variazionale per studiare il problema del moto di due fluidi omogenei incompressibili non viscosi di densità ϱ1, ϱ212) separati da una superficie libera in un bacino chiuso. Dopo alcune approssimazioni si deriva e discute un sistema di equazioni differenziali ordinarie.


С помоыью вариационного принципа исследуется проблема двух слоев однородной невязкой несжимаемой жидкости с плотностями ϱ1 и ϱ212), раазделенных свободной поверхностью в замкнутом резервуаре. Выводится и обсуждается система обыкновенных дифференциальных уравнений по временной переменной, которая аппроксимирует исходную проблему.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    J. C. Luke:Journ. Fluid Mech.,27, 395 (1967).MATHMathSciNetCrossRefADSGoogle Scholar
  2. (2).
    J. W. Miles:Journ. Fluid Mech.,75, 419 (1976).MATHMathSciNetCrossRefADSGoogle Scholar
  3. (3).
    G. B. Whitham:Linear and Nonlinear Waves (New York, N. Y., 1974).Google Scholar
  4. (4).
    G. H. Murphy:Ordinary Differential Equations and Their Solutions (Amsterdam, 1960), p. 384 (equationy″+(a+by′ 2)y=0).Google Scholar

Copyright information

© Società Italiana di Fisica 1978

Authors and Affiliations

  • M. Falcioni
    • 1
  • A. Sutera
    • 1
  • F. Zirilli
    • 2
  1. 1.Istituto di Fisica dell'UniversitàRoma
  2. 2.Istituto di Matematica dell'UniversitàRoma

Personalised recommendations