Strength of Materials

, Volume 30, Issue 4, pp 443–449 | Cite as

Procedure for the investigation of crack resistance of materials of specimens with a corner crack under cyclic loading

  • V. T. Troshchenko
  • B. A. Gryaznov
  • L. A. Zaslotskaya
  • S. V. Kobel'skii
  • O. V. Kononuchenko
Production Section


We propose a computational and experimental procedure for the investigation of the influence of thermomechanical loading on the propagation of a corner fatigue crack under cyclic loading. The taring dependence of the stress intensity factor on the relative radius of the crack is plotted. The limited kinetic diagrams are presented for KhN73MBTYu (ÉI698VD) high-temperature chromiumnickel alloy for temperatures of 20 and 600°C.


Weight Function Stress Intensity Factor Crack Front Crack Resistance Vertex Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. T. Troshchenko, B. A. Gryaznov, Yu. B. Yamshanov, et al.,An Installation for the Investigation of Fatigue of High-Temperature Alloys under Separate and Joint Action of Force and Heat Loads [in Russian], Preprint, Institute for Problems of Strength, Academy of Sciences of USSR, Kiev (1988).Google Scholar
  2. 2.
    G. N. Tret'yachenko and V. G. Barilo, “Thermal and thermostressed state of trihedral prisms that simulate the operation of edges of blades of gas turbines,”Probl. Prochn., No. 12, 41–44 (1986).Google Scholar
  3. 3.
    A. V. Prokopenko, M. I. Sul'tani, V. V. Khil'chevskii, et al., “On fatigue crack resistance of crankshafts,”Probl. Prochn. No. 5, 53–55 (1983).Google Scholar
  4. 4.
    M. Shiratory, “Analysis of stress intensity for surface cracks subjected to arbitrary distributed stresses,”Bul. Fac. Eng. Yokogama Nat. Univ.,35, 1–25 (1986).Google Scholar
  5. 5.
    V. A. Vainshtok, “Engineering methods of computing mechanics based on application of weight functions,”Probl. Prochn., No. 3, 31–36 (1988).Google Scholar
  6. 6.
    I. V. Orynyak, M. V. Borodai, and A. Ya. Krasovskii “On the construction of weight functions for cracks of normal break-off having the form of a part of an ellipse,”Probl. Prochn., No. 4, 58–63 (1994).Google Scholar
  7. 7.
    L. A. Zaslotskaya, “A method for the computation of the stress intensity factors in a wedge-like body with a crack of normal separation in the form of a sector of a circle,”Probl. Prochn., No. 1, 107–113 (1998).Google Scholar
  8. 8.
    J. Nickel, “Berechnung von Spannungsintensitätsfaktoren für Eckrisse mit Hilfe von Verschiebungsansatzen,”Technische Meckanic.,5, No. 2, 36–41 (1984).Google Scholar
  9. 9.
    G. P. Nikishkov, “Calculation of an energy integral by the method of equivalent three-dimensional integration,” in: S. N. Alturi (editor),Computational Methods in Fracture Mechanics [Russian translation], Mir, Moscow (1990), pp. 365–382.Google Scholar
  10. 10.
    V. V. Panasyuk (editor),Fracture Mechanics and Strength of Materials, Vol. 2, M. P. Savruk,Stress Intensity Factors in Cracked Bodies [in Russian], Naukova Dumka, Kiev (1988).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • V. T. Troshchenko
  • B. A. Gryaznov
  • L. A. Zaslotskaya
  • S. V. Kobel'skii
  • O. V. Kononuchenko

There are no affiliations available

Personalised recommendations