Ukrainian Mathematical Journal

, Volume 50, Issue 11, pp 1786–1788 | Cite as

Paley-Wiener-type theorem for nilpotent Lie groups

  • V. V. Kisil’
Brief Communications


A Paley-Wiener-type theorem is proved for connected and simply connected Lie groups.


Unitary Representation Unitary Irreducible Representation Plancherel Measure Coadjoint Representation Nilpotent Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Park, “A Paley-Wiener theorem for all two-and three-step nilpotent Lie group,” J. Funct. Anal., No. 133, 227–330 (1995).Google Scholar
  2. 2.
    G. Polya, Mathematical Discovery [Russian translation], Nauka, Moscow (1978).Google Scholar
  3. 3.
    A. A. Kirillov, “Unitary representations of nilpotent Lie groups,” Usp. Mat. Nauk, 17, No. 4, 57–101 (1962).MathSciNetGoogle Scholar
  4. 4.
    A. A. Kirillov, “On the Plancherel measure for nilpotent Lie groups,” Funkts. Anal., 1, No. 4, 98–100 (1967).MathSciNetGoogle Scholar
  5. 5.
    A. A. Kirillov, Elements of Representation Theory [in Russian], Nauka, Moscow (1972).Google Scholar
  6. 6.
    M. E. Taylor, “Noncommutative harmonic analysis,” in: Math. Surv. and Monographs. Amer. Math. Soc., 22, XVI, Providence, Rhode Island (1986).Google Scholar
  7. 7.
    S. Lang, SL2(R) [Russian translation], Mir, Moscow (1977).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1998

Authors and Affiliations

  • V. V. Kisil’
    • 1
  1. 1.Institute of Mathematics, Economics, and MechanicsOdessa UniversityOdessa

Personalised recommendations