Celestial Mechanics and Dynamical Astronomy

, Volume 48, Issue 3, pp 267–288 | Cite as

Spectral stability of relative equilibria

  • James E. Howard


The spectral stability of synchronous circular orbits in a rotating conservative force field is treated using a recently developed Hamiltonian method. A complete set of necessary and sufficient conditions for spectral stability is derived in spherical geometry. The resulting theory provides a general unified framework that encompasses a wide class of relative equilibria, including the circular restricted three-body problem and synchronous satellite motion about an aspherical planet. In the latter case we find an interesting class of stable nonequatorial circular orbits. A new and simplified treatment of the stability of the Lagrange points is given for the restricted three-body problem.


Stability satellite orbits three-body problem 


  1. Abraham, R. and Marsden, J. E.: 1978,Foundations of Mechanics, 2nd ed., Benjamin-Cummings, Reading, Mass..MATHGoogle Scholar
  2. Binney, J. and Tremaine, S.: 1987,Galactic Dynamics, Princeton Univ. Press.Google Scholar
  3. Blitzer, L., Broughton, E. M., Kang, G. and Page, R. M.: 1962, “Effect of Ellipticity of the Equator on 24-Hour Nearly Circular Satellite Orbits.”J. Geophys. Res. 67, 329.ADSCrossRefGoogle Scholar
  4. Blitzer, L.: 1985, “Existence and Stability of Circular Orbits in Axially Symmetric Gravitational Fields.” InStability of The Solar System and its Minor Natural and Artificial Bodies, ed. V. G. Szebehely, D. Reidel, Dordrecht.Google Scholar
  5. Broucke, R.: 1980, “Notes on the Central Force Problemr n.”Astrophys. and Space Sci. 72, 33.MathSciNetCrossRefADSGoogle Scholar
  6. Danby, J. M. A.: 1968, “Motion of a Satellite of a Very Oblate Planet.”Astron. J. 73, 1031.CrossRefADSGoogle Scholar
  7. Goldstein, H.: 1980,Classical Mechanics, 2nd ed., Addison Wesley, Reading, Mass., Chap. 6.MATHGoogle Scholar
  8. Hirsch, M. W. and Smale, S.: 1974,Differential Equations, Dynamical Systems and Linear Algebra, Academic Press, New York.MATHGoogle Scholar
  9. Holm, D. D., Marsden, J. E., Ratiu, T. and Weinstein, A. W.: 1985, “Nonlinear Stability of Fluid and Plasma Equilibria.”Phys. Reports 123, 1.MATHMathSciNetCrossRefADSGoogle Scholar
  10. Howard, J. E. and MacKay, R. S.: 1987a, “Linear Stability of Symplectic Maps.”J. Math. Phys. 28, 1036.MATHMathSciNetCrossRefADSGoogle Scholar
  11. Howard, J. E. and MacKay, R. S.: 1987b, “Calculation of Stability Boundaries for Equilibria of Hamiltonian Systems.”Physics Lett. 122A, 331.MathSciNetCrossRefADSGoogle Scholar
  12. Howard, J. E.: 1990a, “Stability of Circular Orbits in an Axisymmetric Gravitational Field.” In preparation.Google Scholar
  13. Howard, J. E.: 1990b, “Stability of Circular Orbits in an Axisymmetric Magnetic Field.” In preparation.Google Scholar
  14. Hubbard, W. B.: 1989, InOrigin and Evolution of Planetary and Satellite Atmospheres (S. K. Atreya, J. B. Pollard and M. S. Matthews, Ed.), Univ. of Arizona Press, Tuscon.Google Scholar
  15. MacKay, R. S.: 1986, “Stability of Equilibria of Hamiltonian Systems.” InNonlinear Phenomena and Chaos (S. Sarkar, Ed.) Adam-Hilger, Bristol.Google Scholar
  16. Moser, J. K.: 1958, “The Analytic Invariants of an Area-Preserving Mapping Near a Hyperbolic Fixed Point.”Comm. Pure and Appl. Math. 9, 673.Google Scholar
  17. Moulton, F.: 1914,An Introduction to Celestial Mechanics, The Macmillan Company, New York.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • James E. Howard
    • 1
  1. 1.Institute of Nonlinear Science and Physics DepartmentUniversity of CaliforniaSanta Cruz

Personalised recommendations