Skip to main content
Log in

Modification of membrane fatty acid composition, eicosanoid production, and phospholipase a activity in Atlantic Salmon (Salmo salar) gill and kidney by dietary lipid

  • Article
  • Published:
Lipids

Abstract

Atlantic salmon post-smolts were fed diets containing either fish oils (Fosol, FO and Marinol, MO) rich in long-chain n-3 polyunsaturated fatty acids (PUFA), or plant oils rich in 18:2n-6 (sunflower oil, SO) or 18:3n-3 (linseed oil, LO) for 12 wk. The major PUFA in individual phospholipids from gill and kidney were related to the dietary lipid intake. Levels of n-6 PUFA were highest while levels of n-3 PUFA were lowest in fish fed SO. Fish fed LO generally had lower levels of 20:4n-6 compared to the other treatments while fish fed SO generally had the highest levels of 20:4n-6. In all phospholipid classes except phosphatidylinositol (PI) 20:5n-3 was greatest in fish fed MO followed by FO, LO, and SO. In PI, 20:5n-3 was also highest in fish fed MO but those fed LO contained more 20:5n-3 than those fed FO. This resulted in the ratio of the eicosanoid precursors, 20:4n-6/20:5n-3, being significantly greater in fish fed SO, for all phospholipid classes, compared to fish fed the other three dietary oils. The activity of gill phospholipase A was greatest in fish fed FO and was lowest in fish fed SO. The concentration of PGF was significantly increased in gill homogenates from fish fed MO compared to the other three treatments while PGF was significantly increased in fish fed SO compared to those fed LO. The concentration of PGE3 was significantly reduced in kidney homogenates from fish fed SO compared to the other three treatments while PGE2 was significantly increased in fish fed SO compared to those fed either FO or LO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AA:

arachidonic acid

ANOVA:

analysis of variance

DHA:

docosahexaenoic acid

EPA:

eicosapentaenoic acid

FO:

Fosol fish oil

HETE:

hydroxy eicosatetraenoic acid

HPTLC:

high-performance liquid chromatography

LO:

linseed oil

MO:

Marinol fish oil

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

PGE:

prostaglanding E

PGF:

prostaglandin F

PI:

phosphatidylinositol

PS:

phosphatidylserine

PUFA:

polyunsaturated fatty acid

SO:

sunflower oil

TLC:

thin-layer chromatography

References

  1. Kinsella, J.E. (1987) Effects of Polyunsaturated Fatty Acids on Factors Related to Cardiovascular Disease,Am. J. Cardiol. 60, 23G-32G.

    Article  PubMed  CAS  Google Scholar 

  2. Weber, P.C. (1990) The Modification of the Arachidonic Acid Cascade by n-3 Fatty Acids, inAdvances in Prostaglandin, Thromboxane and Leukotriene Research (Samuelsson, B., Dahlen, S-E., and Hedqvist, P., eds.) Raven Press Inc., New York, Vol. 20, pp. 232–240.

    Google Scholar 

  3. Lands, W.E.M. (1986)Fish and Human Health, Academic Press, London.

    Google Scholar 

  4. Simopoulos, A.P., Kifer, R.R., and Wykes, A.A. (1991) ω3 Fatty Acids: Research Advances in Support of the Field Since June 1985, inHealth Effects of ω3 Fatty Acids in Seafoods (Simopoulos, A.P., Kifer, R.R., Martin, R.E., and Barlow, S.E., eds.) Karger Press, Basel, pp. 51–73.

    Google Scholar 

  5. Terano, T., Salmon, J.A., Higgs, G.A., and Moncada, S. (1986) Eicosapentaenoic Acid as a Modulator of Inflammation. Effect on Prostaglandin and Leukotriene Synthesis,Biochem. Pharmacol. 35, 779–785.

    Article  PubMed  CAS  Google Scholar 

  6. Lands, W.E.M., Lettelier, P.E., Rome, L.H., and Vanderhoek, J.Y. (1973) Inhibition of Prostaglandin Biosynthesis,Adv. Biosci. 9, 15–28.

    Google Scholar 

  7. Chanmugam, P.S., Boudreau, M.D., and Hwang, D.H. (1991) Dietary (n-3) Fatty Acids Alter Fatty Acid Composition and Prostaglandin Synthesis in Rat Testis,J. Nutr. 121, 1173–1178.

    PubMed  CAS  Google Scholar 

  8. Galli, C. (1980) Dietary Influences on Prostaglandin Synthesis,Adv. Nutr. Res. 3, 99–106.

    Google Scholar 

  9. Brenner, R.R. (1981) Nutritional and Hormonal Factors Influencing Desaturation of Essential Fatty Acids,Prog. Lipid Res. 20, 41–47.

    Article  PubMed  CAS  Google Scholar 

  10. Murota, S. (1982)Biochemistry of Prostaglandins, Tokyo Kagaku Doujin, Tokyo, pp. 74–84.

    Google Scholar 

  11. Sanders, T.A.B. (1985) The Importance of Eicosapentaenoic and Docosahexaenoic Acids, inThe Role of Fats in Human Nutrition (Padly, F.B., and Podmore, J., eds.) Ellis Horwood Ltd., Chichester, pp. 101–116.

    Google Scholar 

  12. Horrobin, D.F. (1983) The Regulation of Prostaglandin Biosynthesis by the Manipulation of Essential Fatty Acid Metabolism,Rev. Pure Apl. Sci. 4, 339–383.

    CAS  Google Scholar 

  13. Henderson, R.J., and Tocher, D.R. (1987) The Lipid Biochemistry of Freshwater Fish,Prog. Lipid Res. 26, 281–347.

    Article  PubMed  CAS  Google Scholar 

  14. Sargent, J.R., Henderson, R.J., and Tocher, D.R. (1989) The Lipids, inFish Nutrition (Halver, J.E., ed.) Academic Press, New York, pp. 154–218.

    Google Scholar 

  15. Mustafa, T., and Srivastava, K.C. (1989) Prostaglandins (eicosanoids) and Their Role in Ectothermic Organisms,Adv. Comp. Environ. Physiol. 5, 157–207.

    Google Scholar 

  16. Tocher, D.R., and Sargent, J.R. (1987) The Effects of Calcium Ionophore A23187 on the Metabolism of Arachidonic and Eicosapentaenoic Acids in Neutrophils from a Marine Teleost Fish Rich in (n-3) Polyunsaturated Fatty Acids,Comp. Biochem. Physiol. 87B, 733–739.

    CAS  Google Scholar 

  17. Henderson, R.J., Bell, M.V., and Sargent, J.R. (1985) The Conversion of Polyunsaturated Fatty Acids to Prostaglandins by Tissue Homogenates of the Turbot,Scophthalmus maximus (L.),J. Exp. Mar. Biol. Ecol. 85, 93–99.

    Article  CAS  Google Scholar 

  18. Bell, J.G., Tocher, D.R., and Sargent, J.R. (1994) Effect of Supplementation with 20:3(n-6), 20:4(n-6) and 20:5(n-3) on the Production of Prostaglandins E and F of the 1-, 2- and 3-Series in Turbot (Scophthalmus maximus) Brain Astroglial Cells in Primary Culture,Biochim. Biophys. Acta 1211, 335–342.

    PubMed  CAS  Google Scholar 

  19. Bell, J.G., Sargent, J.R., and Raynard, R.S. (1992) Effects of Increasing Dietary Linoleic Acid on Phospholipid Fatty Acid Composition and Eicosanoid Production in Leucocytes and Gill Cells of Atlantic Salmon (Salmo salar),Prostaglandins, Leukotrienes and Essent. Fatty Acids 45, 197–206.

    Article  CAS  Google Scholar 

  20. Bell, J.G., Dick, J.R., McVicar, A.H., Sargent, J.R., and Thompson, K.D. (1993) Dietary Sunflower, Linseed and Fish Oils Affect Phospholipid Fatty Acid Composition, Development of Cardiac Lesions, Phospholipase Activity and Eicosanoid Production in Atlantic Salmon (Salmo salar),Prostaglandins, Leukotrienes and Essent. Fatty Acids 49, 665–673.

    Article  CAS  Google Scholar 

  21. Massferrer, J.L., Rios, A.P., and Schwartzman, M.L. (1990). Inhibition of Renal, Cardiac and Corneal (Na+−K+) ATPase by 12(R)-Hydroxyeicosatetraenoic Acid,Biochem. Pharmacol. 39, 1971–1974.

    Article  Google Scholar 

  22. Ogata, H., Nomura, T., and Hata, M. (1978) Prostaglandin Biosynthesis in Tissue Homogenates of Marine Animals,Bull. Jap. Soc. Sci. Fish 44, 1367–1370.

    CAS  Google Scholar 

  23. Christ, E.J., and Van Dorp, D.A. (1972) Comparative Aspects of Prostaglandin Biosynthesis in Animal Tissues,Biochim. Biophys. Acta 270, 537–545.

    CAS  Google Scholar 

  24. Wales, N.A.M., and Gaunt, T. (1986) Hemodynamic, Renal, and Steroidogenic Actions of Prostaglandins E1, E2, A2 and F in European Eels,Gen. Comp. Endocrinol. 62, 327–334.

    Article  PubMed  CAS  Google Scholar 

  25. Brown, J.A., Gray, C.J., Hattersley, G., and Robinson, J. (1991) Prostaglandins in the Kidney, Urinary Bladder and Gills of the Rainbow Trout and European Eel Adapted to Freshwater and Seawater.Gen. Comp. Endocrinol. 84, 328–335.

    Article  PubMed  CAS  Google Scholar 

  26. Van Praag, D., Farber, S.J., Minkin, E., and Primor, N. (1987) Production of Eicosanoids by the Killifish Gills and Opercular Epithelia and Their Effect on Active Transport of Ions,Gen. Comp. Endocrinol. 67, 50–57.

    Article  PubMed  Google Scholar 

  27. Bell, J.G., Raynard, R.S., and Sargent, J.R. (1991) The Effect of Dietary Linoleic Acid on the Fatty Acid Composition of the Individual Phospholipids and Lipoxygenase Products from Gills and Leucocytes of Atlantic Salmon (Salmo salar),Lipids 26, 445–450.

    CAS  Google Scholar 

  28. U.S. National Research Council (1981) Nutrient Requirement of Coldwater Fishes, Washington, D.C., National Academy Press.

    Google Scholar 

  29. Folch, J., Lees, M., and Sloane-Stanley, G.H. (1957) A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues,J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  30. Ackman, R.G. (1980) Fish Lipids Part 1, inAdvances in Fish Science and Technology (Connell, J.J., ed.) Fishing News Books, Farnham, pp. 87–103.

    Google Scholar 

  31. Powell, W.S. (1982) Rapid Extraction of Arachidonic Acid Metabolites from Biological Samples Using Octadecyl Silica,Methods Enzymol. 86, 467–477.

    Article  PubMed  CAS  Google Scholar 

  32. Szymanska, G., Pikula, S., and Zbrowski, J. (1991) Effect of Hyper- and Hypothyroidism on Phospholipid Fatty Acid Composition and Phospholipase Activity in Sarcolemma of Rabbit Cardiac Muscle,Biochim. Biophys. Acta 1083, 265–270.

    PubMed  CAS  Google Scholar 

  33. Garg, M.L., Thomson, A.B.R., and Clandinin, M.T. (1990) Interactions of Saturated, n-6 and n-3 Polyunsaturated Fatty Acids to Modulate Arachidonic Acid Metabolism,J. Lipid Res. 31, 271–277.

    PubMed  CAS  Google Scholar 

  34. Bell, M.V., Simpson, C.M.F., and Sargent, J.R. (1983) (n-3) and (n-6) Polyunsaturated Fatty Acid in the Salt-Secreting Epithelia from Two Marine Fish Species,Lipids 18, 720–726.

    CAS  Google Scholar 

  35. German, J.B., and Hu, M.-L. (1990) Oxidant Stress Inhibits the Endogenous Production of Lipoxygenase Metabolites in Rat Lungs and Fish Gills,Free Rad. Biol. Med. 8, 441–448.

    Article  PubMed  CAS  Google Scholar 

  36. Spector, A.A., and Yorek, M.A. (1985) Membrane Lipid Composition and Cellular Function,J. Lipid Res. 26, 1015–1035.

    PubMed  CAS  Google Scholar 

  37. Grataroli, R., Leonardi, J., Charbonnier, M., Lafont, H., and Nalbone, G. (1988) Effects of Dietary Corn Oil and Salmon Oil on Lipids and PGE2 in Rat Gastric Mucosa,Lipids 23, 666–670.

    PubMed  CAS  Google Scholar 

  38. Lee, J.H., Sugano, M., and Ide, T. (1988) Effects of Various Combinations of ω3 and ω6 Polyunsaturated Fats with Saturated Fat on Serum Lipid Levels and Eicosanoid Production in Rats,J. Nutr. Sci. Vitaminol. 34, 117–129.

    PubMed  CAS  Google Scholar 

  39. Nalbone, G., Grynberg, A., Chevalier, A., Leonardi, J., Termine, E., and Lafont, H. (1990) Phospholipase A Activity of Cultured Rat Ventricular Myocyte Is Affected by the Nature of Cellular Polyunsaturated Fatty Acids,Lipids 25, 301–306.

    PubMed  CAS  Google Scholar 

  40. Burack, W.R. and Biltonen, R.L. (1994) Lipid Bilayer Heterogeneities and Modulation of Phospholipase A2 Activity,Chem. Phys. Lipids 73, 209–222.

    Article  PubMed  CAS  Google Scholar 

  41. Malis, C.D., Weber, P.C., Leaf A., and Bonventre, J.V. (1990) Incorporation of Marine Lipids into Mitochondrial Membranes Increases Susceptibility to Damage by Calcium and Reactive Oxygen Species: Evidence for Enhanced Activation of Phospholipase A2 in Mitochondria Enriched with n-3 Fatty Acids,Proc. Natl. Acad. Sci. USA 87, 8845–8849.

    Article  PubMed  CAS  Google Scholar 

  42. Horrobin, D.F. (1992) Nutritional and Medical Importance of Gamma-Linolenic Acid,Prog. Lipid Res. 31, 163–194.

    Article  PubMed  CAS  Google Scholar 

  43. Maetz, J. (1974) inBiochemical and Biophysical Perspectives in Marine Biology (Malins, D.C., and Sargent, J.R., eds.) Vol. 1, pp. 1–167, Academic Press, London.

    Google Scholar 

  44. Zadunaisky, J.A. (1984) The Chloride Cells: Active Transport of Chloride and the Paracellular Pathways, inFish Physiology (Hoar, W.S., Randall, D.J., and Brett, J.R., eds.) pp. 13–176, Academic Press, London.

    Google Scholar 

  45. Brown, J.A., and Bucknall, R.M. (1986) Antidiuretic and Cardiovascular Actions of PGE2 in the Rainbow TroutSalmo gairdneri, Gen. Comp. Endocrinol. 61, 330–337.

    Article  PubMed  CAS  Google Scholar 

  46. Wales, N.A.M. (1988) Hormone Studies inMyxine glutinosa: Effects of the Eicosanoids Arachidonic Acid, Prostaglandin E1, E2, A2, F, Thromboxane B2 and Indomethacin on Plasma Cortisol, Blood Pressure, Urine Flow and Electrolyte Balance,J. Comp. Physiol. B 158, 621–626.

    Article  PubMed  CAS  Google Scholar 

  47. Beckman, B., and Mustafa, T. (1992) Arachidonic Acid Metabolism in Gill Homogenate and Isolated Gill Cells from Rainbow Trout,Oncorhynchus mykiss: The Effect of Osmolality, Electrolytes and Prolactin,Fish Physiol. Biochem. 10, 213–222.

    Article  CAS  Google Scholar 

  48. Lands, W.E.M. (1989) Differences in n-3 and n-6 Eicosanoid Precursors, inAdvances in Prostaglandin, Thromboxane and Leukotriene Research (Samuelsson, B., Wong, P.Y.K., and Sun, F.F., eds.) Vol. 19, Raven Press, New York, pp. 602–605.

    Google Scholar 

  49. Knight, J., and Rowley, A.F. (1995) Immunoregulatory Activities of Eicosanoids in the Rainbow Trout (Oncoryhnchus mykiss),Immunology 85, 389–393.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Bell, J.G., Farndale, B.M., Dick, J.R. et al. Modification of membrane fatty acid composition, eicosanoid production, and phospholipase a activity in Atlantic Salmon (Salmo salar) gill and kidney by dietary lipid. Lipids 31, 1163–1171 (1996). https://doi.org/10.1007/BF02524291

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02524291

Keywords

Navigation