Protoplasma

, Volume 214, Issue 1–2, pp 65–72 | Cite as

Phloem loading in the sucrose-export-defective (SXD-1) mutant maize is limited by callose deposition at plasmodesmata in bundle sheath—vascular parenchyma interface

  • C. E. J. Botha
  • R. H. M. Cross
  • A. J. E. van Bel
  • C. I. Peter
Original Articles

Summary

Using Lucifer Yellow we have demonstrated that the phloem-loading pathway from the mesophyll to the bundle sheath—vascular parenchyma interface inZea mays source leaves follows a symplasmic route in small and intermediate vascular bundles in control as well as in the green sections of mutant sucrose-export-defective (SXD-1) plants. In the anthocyanin-rich mutant leaf sections, Lucifer Yellow transport was prohibited along the same path, at the bundle sheath—vascular parenchyma interface in particular. Plasmodesmata at the latter interface in SXD-1 anthocyanin-rich leaf sections appear to be structurally altered through callose deposition at the plasmodesmal orifices. We suggest that a transport bottleneck at the bundle sheath—vascular parenchyma interface is thus orchestrated and regulated through callose formation, preventing symplasmic transport across this important loading interface.

Keywords

Callose Lucifer yellow Plasmodesma Phloem loading Sucrose-export-defective mutant Zea mays 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison JCS, Weinmann H (1970) Effect of absence of developing grain on carbohydrate content and senescence of maize leaves. Plant Physiol 46: 435–436PubMedGoogle Scholar
  2. Apitius A, Lehmann H (1995) The deposition of different wall materials as a wound reaction in the liverwortRiella helicophylla. Cryptogam Bot 5: 351–359Google Scholar
  3. Beebe DU, Turgeon R (1991) Current perspectives on plasmodesmata structure and function. Physiol Plant 83: 194–199CrossRefGoogle Scholar
  4. Blackman LM, Gunning BES, Overall RL (1998) A 45 kDa protein isolated from the nodal walls ofChara corallina is localised to plasmodesmata. Plant J 15: 401–411CrossRefGoogle Scholar
  5. Botha CEJ (1988) Plasmodesmatal distribution and frequency in vascular bundles and contiguous tissue of the leaf ofThemeda triandra. Planta 173: 433–441CrossRefGoogle Scholar
  6. —, Cross RHM (1997) Plasmodesmatal frequency in relation to short-distance transport and phloem loading in the leaves of barley (Hordeum vulgare): phloem is not loaded directly from the symplast. Physiol Plant 99: 355–362CrossRefGoogle Scholar
  7. Ding B (1998) Intercellular protein trafficking through plasmodesmata. Plant Mol Biol 38: 279–310PubMedCrossRefGoogle Scholar
  8. —, Haudenshield JS, Hull RJ, Wolf S, Beachy RN, Lucas WJ (1992) Secondary plasmodesmata are specific sites of localization of the tobacco mosaic movement protein in transgenic tobacco plants. Plant Cell 4: 915–928PubMedCrossRefGoogle Scholar
  9. — —, Willmitzer L, Lucas WJ (1993) Correlation between arrested secondary plasmodesmal development and the onset of accelerated leaf senescence in yeast acid invertase transgenic plants. Plant J 4: 179–189.PubMedCrossRefGoogle Scholar
  10. Erwee MG, Goodwin PB (1983) Characterisation of theEgeria densa Planch, leaf symplast: inhibition of the intercellular movement of fluorescent probes by group II ions. Planta 158: 320–328CrossRefGoogle Scholar
  11. Evert RF, Eschrich W, Heyser W (1977) Distribution and structure of plasmodesmata in mesophyll and bundle-sheath cells ofZea mays. Planta 136: 77–89CrossRefGoogle Scholar
  12. — — — (1978) Leaf structure in relation to solute transport and phloem loading inZea mays L. Planta 138: 279–294CrossRefGoogle Scholar
  13. —, Russin WA, Botha CEJ (1996) Distribution and frequency of plasmodesmata in relation to photoassimilate pathways and phloem loading in the barley leaf. Planta 198: 572–579CrossRefGoogle Scholar
  14. Gamalei YV (1989) Structure and function of leaf minor veins in trees and herbs: a taxonomic review. Trees 3: 96–110CrossRefGoogle Scholar
  15. — (1991) Phloem loading and its development related to plant evolution from trees to herbs. Trees 5: 50–64CrossRefGoogle Scholar
  16. Goodrick BJ, Kuhn CW, Hussey RS (1991) Restricted systemic movement of cowpea chlorotic mottle virus in soybean with non-necrotic resistance. Phytopathology 81: 1426–1431Google Scholar
  17. Hughes JE, Gunning BES (1980) Glutaraldehyde-induced deposition of callose. Can J Bot 58: 250–258Google Scholar
  18. Kalt-Torres W, Kerr PS, Usuda H, Huber SC (1987) Diurnal changes in maize leaf photosynthesis. Plant Physiol 83: 283–288PubMedGoogle Scholar
  19. Kempers R, van Bel AJE (1997) Symplasmic connections between sieve element and companion cell in the stem phloem ofVicia faba L have a molecular exclusion limit of at least 10 kDa. Planta 201: 195–200CrossRefGoogle Scholar
  20. —, Prior DAM, Oparka KJ, Knoblauch M, van Bel AJE (1999) Integration of controlled intercellular pressure injection, iontophoresis and membrane potential measurement. Plant Biol 1: 61–67Google Scholar
  21. Kollmann R, Glockmann C (1999) Multimorphology and nomenclature of plasmodesmata in higher plants. In: van Bel AJE, van Kesteren WJP (eds) Plasmodesmata: structure, function, role in cell communication. Springer, Berlin Heidelberg New York Tokyo, pp 149–172Google Scholar
  22. Lucas WJ, Olesinski A, Hull RJ, Haudenshield JS, Deom CM, Wolf S, Beachy RN (1993) Influence of the tobacco mosaic virus 30-kDa movement protein on carbon metabolism and photosynthate partitioning in transgenic tobacco plants. Planta 190: 88–96CrossRefGoogle Scholar
  23. Nelson T, Dengler N (1997) Leaf vascular pattern formation. Plant Cell 9: 1121–1135PubMedCrossRefGoogle Scholar
  24. Radford JE, Vesk M, Overall RL (1998) Callose deposition at plasmodesmata. Protoplasma 201: 30–37CrossRefGoogle Scholar
  25. Rhoades MM, Carvalho A (1944) The function and structure of the parenchyma sheath plastids of the maize leaf. Bull Torrey Bot Club 71: 335–346CrossRefGoogle Scholar
  26. Robards AW, Lucas WJ (1990) Plasmodesmata. Annu Rev Plant Physiol Plant Mol Biol 41: 369–419CrossRefGoogle Scholar
  27. Russin WA, Evert RF, Vanderveer PJ, Sharkey TD, Briggs SP (1996) Modification of a specific class of plasmodesmata and loss of sucrose export ability in the sucrose export defectivel maize mutant. Plant Cell 8: 645–658PubMedCrossRefGoogle Scholar
  28. Schulz A (1999) Physiological control of plasmodesmal gating. In: van Bel AJE, van Kesteren WJP (eds) Plasmodesmata: structure, function, role in cell communication. Springer, Berlin Heidelberg New York Tokyo, pp 173–204Google Scholar
  29. Thompson JR, Garcia-Arenal F (1998) The bundle-sheath phloem interface ofCucumis sativus is a boundary to systemic infection by tomato aspermy virus. Mol Plant Microbe Interact 11: 109–114Google Scholar
  30. Tucker EB (1990) Calcium-loaded 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetra acetic acid blocks cell-to-cell diffusion of carboxyfluorescein in staminal hairs ofSetcreasea purpurea. Protoplasma 174: 45–49CrossRefGoogle Scholar
  31. —, Boss WF (1996) Mastoparan-induced intracellular Ca2+ fluxes may regulate cell-to-cell communication in plants. Plant Physiol 111: 459–467PubMedGoogle Scholar
  32. Turgeon R, Beebe DU (1991) The evidence for symplasmic phloem loading. Plant Physiol 96: 349–354PubMedCrossRefGoogle Scholar
  33. van Bel AJE (1992) Different phloem-loading machineries correlated with the climate. Acta Bot Neerl 41: 121–141Google Scholar
  34. — (1993) Strategies of phloem loading. Annu Rev Plant Physiol Plant Mol Biol 44: 253–281CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2000

Authors and Affiliations

  • C. E. J. Botha
    • 1
  • R. H. M. Cross
    • 2
  • A. J. E. van Bel
    • 3
  • C. I. Peter
    • 1
  1. 1.Botany DepartmentRhodes UniversityGrahamstownSouth Africa
  2. 2.Electron Microscopy UnitRhodes UniversityGrahamstown
  3. 3.Institut für Allgemeine Botanik und PflanzenphysiologieJustus-Liebig Universität GiessenGiessen

Personalised recommendations