Skip to main content
Log in

On the origin of the inverted-barometer effect at subinertial frequencies

  • Published:
Il Nuovo Cimento C

Summary

An analytical model, simulating the frictionless response of the sea contained in a rotating, rectangular channel of arbitrary width to air pressure waves travelling at varying directions, is developed. Since planetary atmospheric waves are of primary interest as forcing agents, a solution is found for subinertial frequencies. For an atmospheric wave travelling along a channel whose width is close to the Rossby deformation radius, the model predicts sea levels and currents organized in two coastal waves and a geostrophic current system prevailing in mid-basin. The right-hand coastal wave is more pronounced than the left-hand wave. The structure is coupled to the atmospheric wave, and is resonantly driven when the phase velocity of the forcing wave approaches the Kelvin wave velocity. Along the coasts a quasi-static adjustment occurs under off-resonant conditions. When the atmospheric wave is moving across the channel at a sharp angle, the response of the sea is enhanced for the apparent along-channel velocities below those of free shallow-water waves, due to reflections at channel boundaries. For the atmospheric wave that travels at right angle across the channel, the resonance is not possible, and the sea level undershoots a simple inverted-barometer response. Both travelling and standing waves appear in the channel. In the narrow-channel limit only a standing wave remains, with a nodal line in the middle of the channel. In the central part of the channel the currents are almost geostrophic at very low frequencies. The model is used to interpret some aspects of the response of the Mediterranean Sea to planetary-scale atmospheric forcing. In particular, it is shown that resonant transfer of energy from the atmosphere to the sea is most unlikely, since planetary atmospheric waves are rather slow and they travel along the main axis of the Mediterranean basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Proudman:Dynamical Oceanography (Methuen, London, 1953) p. 409.

    Google Scholar 

  2. J. Proudman:Geophys. Suppl. Mon. Not. R. Astron. Soc.,2, 197 (1929).

    MATH  Google Scholar 

  3. S. Rombakis:Z. Meteorol.,2, 300 (1948).

    MathSciNet  Google Scholar 

  4. S. Unoki:Oceanogr. Mag.,4/1, 1 (1950).

    Google Scholar 

  5. A. R. Robinson:J. Geophys. Res.,69, 367 (1964).

    ADS  Google Scholar 

  6. C. Wunsch:Rev. Geophys. Space Phys.,10, 1 (1972).

    ADS  Google Scholar 

  7. W. Brown, W. Munk, F. Snodgrass, H. Mofjeld andB. Zetler:J. Phys. Oceanogr.,5, 75 (1975).

    Article  ADS  Google Scholar 

  8. M. Crépon:Mem. Soc. R. Sci. Liége,6/10, 43 (1976).

    Google Scholar 

  9. K. H. Brink:Dyn. Atmos. Oceans,2, 153 (1978).

    Article  ADS  Google Scholar 

  10. S. S. Lappo, O. I. Lihaĉeva andA. V. Skripnik:Dokl. Akad. Nauk SSSR,244, 1475 (1979).

    Google Scholar 

  11. M. Crépon andC. Richez:J. Phys. Oceanogr.,12, 1437 (1982).

    Article  ADS  Google Scholar 

  12. B. Penzar, M. Orlić andI. Penzar:Thalassia Jugosl.,16, 51 (1980).

    Google Scholar 

  13. M. Orlić:J. Phys. Oceanogr.,13, 1301 (1983).

    Article  ADS  Google Scholar 

  14. A. Lascaratos andM. Gaĉić:J. Phys. Oceanogr.,20, 522 (1990).

    Article  ADS  Google Scholar 

  15. A. Palumbo andA. Mazzarella:J. Geophys. Res.,87, 4249 (1982).

    ADS  Google Scholar 

  16. M. Pasarić andM. Orlić: inSea Level Changes-Determination and Effects, edited byP. L. Woodworth, inGeophysical Monograph 69, IUGG Vol.11, (American Geophysical Union, Washington, 1992), p. 208.

    Google Scholar 

  17. C. J. R. Garret:Oceanol. Acta,6, 79 (1983).

    Google Scholar 

  18. S. R. Dickman:J. Geophys. Res.,93, 14941 (1988).

    Article  ADS  Google Scholar 

  19. R. M. Ponte, D. A. Salstein andR. D. Rosen:J. Phys. Oceanogr.,21, 1043 (1991).

    Article  ADS  Google Scholar 

  20. W. Krauss:Deut. Hydrogr. Z.,25/2, 49 (1972).

    Article  Google Scholar 

  21. J. S. Bendat andA. G. Piersol:Random Data-Analysis and Measurement Procedures (Wiley, New York, 1971) p.407.

    MATH  Google Scholar 

  22. H. Lamb:Hydrodynamics (Cambridge University Press, Cambridge, 1932) p. 739.

    MATH  Google Scholar 

  23. P. H. LeBlond andL. A. Mysak:Waves in the Ocean, (Elsevier, Amsterdam, 1978), p. 602.

    Google Scholar 

  24. A. E. Gill:Atmosphere-Ocean Dynamics (Academic Press, New York, 1982), p. 662.

    Google Scholar 

  25. E. Palmén andC. W. Newton:Atmospheric Circulation Systems (Academic Press, New York, N.Y. 1969) p. 603.

    Google Scholar 

  26. D. B. Rao:J. Fluid Mech.,25, 523 (1966).

    Article  ADS  Google Scholar 

  27. D. B. Rao andD. J. Schwab:Phil. Trans. R. Soc. London Ser. A,281, 63 (1976).

    ADS  Google Scholar 

  28. D. B. Rao: inModeling of Transport Mechanisms in Oceans and Lakes, Proc. Symp. CCIW, Burlington, Ontario, 1977 edited byT. S. Murty, p. 391.

  29. J. Pedlosky:Geophysical Fluid Dynamics (Springer-Verlag, New York, N.Y. 1987) p. 710.

    MATH  Google Scholar 

  30. G. T. Csanady:J. Phys. Oceanogr.,1, 92 (1971).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malaĉiĉ, V., Orlić, M. On the origin of the inverted-barometer effect at subinertial frequencies. Il Nuovo Cimento C 16, 265–288 (1993). https://doi.org/10.1007/BF02524229

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02524229

PACS 92.10

Navigation